Properties

Label 650.4.a.m.1.1
Level $650$
Weight $4$
Character 650.1
Self dual yes
Analytic conductor $38.351$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [650,4,Mod(1,650)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(650, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("650.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 650 = 2 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 650.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(38.3512415037\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{105}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 26 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(5.62348\) of defining polynomial
Character \(\chi\) \(=\) 650.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000 q^{2} -1.62348 q^{3} +4.00000 q^{4} +3.24695 q^{6} -2.62348 q^{7} -8.00000 q^{8} -24.3643 q^{9} -51.1174 q^{11} -6.49390 q^{12} -13.0000 q^{13} +5.24695 q^{14} +16.0000 q^{16} -4.36433 q^{17} +48.7287 q^{18} -47.4817 q^{19} +4.25915 q^{21} +102.235 q^{22} +91.5991 q^{23} +12.9878 q^{24} +26.0000 q^{26} +83.3887 q^{27} -10.4939 q^{28} -139.988 q^{29} +31.1418 q^{31} -32.0000 q^{32} +82.9878 q^{33} +8.72866 q^{34} -97.4573 q^{36} +377.482 q^{37} +94.9634 q^{38} +21.1052 q^{39} -7.71646 q^{41} -8.51830 q^{42} -75.5991 q^{43} -204.470 q^{44} -183.198 q^{46} -186.785 q^{47} -25.9756 q^{48} -336.117 q^{49} +7.08538 q^{51} -52.0000 q^{52} -236.457 q^{53} -166.777 q^{54} +20.9878 q^{56} +77.0854 q^{57} +279.976 q^{58} -4.36433 q^{59} +380.360 q^{61} -62.2835 q^{62} +63.9192 q^{63} +64.0000 q^{64} -165.976 q^{66} -98.2424 q^{67} -17.4573 q^{68} -148.709 q^{69} +1168.46 q^{71} +194.915 q^{72} +404.357 q^{73} -754.963 q^{74} -189.927 q^{76} +134.105 q^{77} -42.2104 q^{78} -856.748 q^{79} +522.457 q^{81} +15.4329 q^{82} +920.898 q^{83} +17.0366 q^{84} +151.198 q^{86} +227.267 q^{87} +408.939 q^{88} -1526.04 q^{89} +34.1052 q^{91} +366.396 q^{92} -50.5579 q^{93} +373.570 q^{94} +51.9512 q^{96} +960.979 q^{97} +672.235 q^{98} +1245.44 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 4 q^{2} + 7 q^{3} + 8 q^{4} - 14 q^{6} + 5 q^{7} - 16 q^{8} + 23 q^{9} - 51 q^{11} + 28 q^{12} - 26 q^{13} - 10 q^{14} + 32 q^{16} + 63 q^{17} - 46 q^{18} + 28 q^{19} + 70 q^{21} + 102 q^{22} + 9 q^{23}+ \cdots + 1251 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.00000 −0.707107
\(3\) −1.62348 −0.312438 −0.156219 0.987722i \(-0.549931\pi\)
−0.156219 + 0.987722i \(0.549931\pi\)
\(4\) 4.00000 0.500000
\(5\) 0 0
\(6\) 3.24695 0.220927
\(7\) −2.62348 −0.141654 −0.0708272 0.997489i \(-0.522564\pi\)
−0.0708272 + 0.997489i \(0.522564\pi\)
\(8\) −8.00000 −0.353553
\(9\) −24.3643 −0.902383
\(10\) 0 0
\(11\) −51.1174 −1.40113 −0.700567 0.713587i \(-0.747069\pi\)
−0.700567 + 0.713587i \(0.747069\pi\)
\(12\) −6.49390 −0.156219
\(13\) −13.0000 −0.277350
\(14\) 5.24695 0.100165
\(15\) 0 0
\(16\) 16.0000 0.250000
\(17\) −4.36433 −0.0622650 −0.0311325 0.999515i \(-0.509911\pi\)
−0.0311325 + 0.999515i \(0.509911\pi\)
\(18\) 48.7287 0.638081
\(19\) −47.4817 −0.573318 −0.286659 0.958033i \(-0.592545\pi\)
−0.286659 + 0.958033i \(0.592545\pi\)
\(20\) 0 0
\(21\) 4.25915 0.0442582
\(22\) 102.235 0.990751
\(23\) 91.5991 0.830423 0.415211 0.909725i \(-0.363708\pi\)
0.415211 + 0.909725i \(0.363708\pi\)
\(24\) 12.9878 0.110464
\(25\) 0 0
\(26\) 26.0000 0.196116
\(27\) 83.3887 0.594377
\(28\) −10.4939 −0.0708272
\(29\) −139.988 −0.896382 −0.448191 0.893938i \(-0.647932\pi\)
−0.448191 + 0.893938i \(0.647932\pi\)
\(30\) 0 0
\(31\) 31.1418 0.180427 0.0902133 0.995922i \(-0.471245\pi\)
0.0902133 + 0.995922i \(0.471245\pi\)
\(32\) −32.0000 −0.176777
\(33\) 82.9878 0.437767
\(34\) 8.72866 0.0440280
\(35\) 0 0
\(36\) −97.4573 −0.451191
\(37\) 377.482 1.67723 0.838616 0.544723i \(-0.183365\pi\)
0.838616 + 0.544723i \(0.183365\pi\)
\(38\) 94.9634 0.405397
\(39\) 21.1052 0.0866547
\(40\) 0 0
\(41\) −7.71646 −0.0293929 −0.0146964 0.999892i \(-0.504678\pi\)
−0.0146964 + 0.999892i \(0.504678\pi\)
\(42\) −8.51830 −0.0312953
\(43\) −75.5991 −0.268111 −0.134055 0.990974i \(-0.542800\pi\)
−0.134055 + 0.990974i \(0.542800\pi\)
\(44\) −204.470 −0.700567
\(45\) 0 0
\(46\) −183.198 −0.587198
\(47\) −186.785 −0.579689 −0.289845 0.957074i \(-0.593604\pi\)
−0.289845 + 0.957074i \(0.593604\pi\)
\(48\) −25.9756 −0.0781095
\(49\) −336.117 −0.979934
\(50\) 0 0
\(51\) 7.08538 0.0194539
\(52\) −52.0000 −0.138675
\(53\) −236.457 −0.612828 −0.306414 0.951898i \(-0.599129\pi\)
−0.306414 + 0.951898i \(0.599129\pi\)
\(54\) −166.777 −0.420288
\(55\) 0 0
\(56\) 20.9878 0.0500824
\(57\) 77.0854 0.179126
\(58\) 279.976 0.633838
\(59\) −4.36433 −0.00963029 −0.00481514 0.999988i \(-0.501533\pi\)
−0.00481514 + 0.999988i \(0.501533\pi\)
\(60\) 0 0
\(61\) 380.360 0.798362 0.399181 0.916872i \(-0.369295\pi\)
0.399181 + 0.916872i \(0.369295\pi\)
\(62\) −62.2835 −0.127581
\(63\) 63.9192 0.127826
\(64\) 64.0000 0.125000
\(65\) 0 0
\(66\) −165.976 −0.309548
\(67\) −98.2424 −0.179138 −0.0895688 0.995981i \(-0.528549\pi\)
−0.0895688 + 0.995981i \(0.528549\pi\)
\(68\) −17.4573 −0.0311325
\(69\) −148.709 −0.259456
\(70\) 0 0
\(71\) 1168.46 1.95311 0.976554 0.215271i \(-0.0690634\pi\)
0.976554 + 0.215271i \(0.0690634\pi\)
\(72\) 194.915 0.319040
\(73\) 404.357 0.648307 0.324153 0.946005i \(-0.394921\pi\)
0.324153 + 0.946005i \(0.394921\pi\)
\(74\) −754.963 −1.18598
\(75\) 0 0
\(76\) −189.927 −0.286659
\(77\) 134.105 0.198477
\(78\) −42.2104 −0.0612741
\(79\) −856.748 −1.22015 −0.610074 0.792344i \(-0.708860\pi\)
−0.610074 + 0.792344i \(0.708860\pi\)
\(80\) 0 0
\(81\) 522.457 0.716677
\(82\) 15.4329 0.0207839
\(83\) 920.898 1.21785 0.608926 0.793227i \(-0.291601\pi\)
0.608926 + 0.793227i \(0.291601\pi\)
\(84\) 17.0366 0.0221291
\(85\) 0 0
\(86\) 151.198 0.189583
\(87\) 227.267 0.280064
\(88\) 408.939 0.495376
\(89\) −1526.04 −1.81753 −0.908763 0.417312i \(-0.862972\pi\)
−0.908763 + 0.417312i \(0.862972\pi\)
\(90\) 0 0
\(91\) 34.1052 0.0392878
\(92\) 366.396 0.415211
\(93\) −50.5579 −0.0563721
\(94\) 373.570 0.409902
\(95\) 0 0
\(96\) 51.9512 0.0552318
\(97\) 960.979 1.00590 0.502952 0.864315i \(-0.332247\pi\)
0.502952 + 0.864315i \(0.332247\pi\)
\(98\) 672.235 0.692918
\(99\) 1245.44 1.26436
\(100\) 0 0
\(101\) 848.854 0.836278 0.418139 0.908383i \(-0.362682\pi\)
0.418139 + 0.908383i \(0.362682\pi\)
\(102\) −14.1708 −0.0137560
\(103\) 1819.89 1.74096 0.870480 0.492203i \(-0.163808\pi\)
0.870480 + 0.492203i \(0.163808\pi\)
\(104\) 104.000 0.0980581
\(105\) 0 0
\(106\) 472.915 0.433335
\(107\) 165.008 0.149083 0.0745415 0.997218i \(-0.476251\pi\)
0.0745415 + 0.997218i \(0.476251\pi\)
\(108\) 333.555 0.297188
\(109\) 920.719 0.809073 0.404536 0.914522i \(-0.367433\pi\)
0.404536 + 0.914522i \(0.367433\pi\)
\(110\) 0 0
\(111\) −612.832 −0.524031
\(112\) −41.9756 −0.0354136
\(113\) −965.986 −0.804180 −0.402090 0.915600i \(-0.631716\pi\)
−0.402090 + 0.915600i \(0.631716\pi\)
\(114\) −154.171 −0.126662
\(115\) 0 0
\(116\) −559.951 −0.448191
\(117\) 316.736 0.250276
\(118\) 8.72866 0.00680964
\(119\) 11.4497 0.00882011
\(120\) 0 0
\(121\) 1281.99 0.963175
\(122\) −760.719 −0.564527
\(123\) 12.5275 0.00918345
\(124\) 124.567 0.0902133
\(125\) 0 0
\(126\) −127.838 −0.0903869
\(127\) 1105.46 0.772393 0.386196 0.922417i \(-0.373789\pi\)
0.386196 + 0.922417i \(0.373789\pi\)
\(128\) −128.000 −0.0883883
\(129\) 122.733 0.0837679
\(130\) 0 0
\(131\) 700.020 0.466878 0.233439 0.972371i \(-0.425002\pi\)
0.233439 + 0.972371i \(0.425002\pi\)
\(132\) 331.951 0.218884
\(133\) 124.567 0.0812131
\(134\) 196.485 0.126669
\(135\) 0 0
\(136\) 34.9146 0.0220140
\(137\) −1230.03 −0.767070 −0.383535 0.923526i \(-0.625293\pi\)
−0.383535 + 0.923526i \(0.625293\pi\)
\(138\) 297.418 0.183463
\(139\) −1004.05 −0.612679 −0.306340 0.951922i \(-0.599104\pi\)
−0.306340 + 0.951922i \(0.599104\pi\)
\(140\) 0 0
\(141\) 303.241 0.181117
\(142\) −2336.92 −1.38106
\(143\) 664.526 0.388605
\(144\) −389.829 −0.225596
\(145\) 0 0
\(146\) −808.713 −0.458422
\(147\) 545.678 0.306169
\(148\) 1509.93 0.838616
\(149\) 2310.81 1.27053 0.635264 0.772295i \(-0.280891\pi\)
0.635264 + 0.772295i \(0.280891\pi\)
\(150\) 0 0
\(151\) 2268.83 1.22275 0.611374 0.791341i \(-0.290617\pi\)
0.611374 + 0.791341i \(0.290617\pi\)
\(152\) 379.854 0.202699
\(153\) 106.334 0.0561868
\(154\) −268.210 −0.140344
\(155\) 0 0
\(156\) 84.4207 0.0433274
\(157\) 1943.62 0.988011 0.494006 0.869459i \(-0.335532\pi\)
0.494006 + 0.869459i \(0.335532\pi\)
\(158\) 1713.50 0.862775
\(159\) 383.883 0.191471
\(160\) 0 0
\(161\) −240.308 −0.117633
\(162\) −1044.91 −0.506767
\(163\) −311.814 −0.149835 −0.0749177 0.997190i \(-0.523869\pi\)
−0.0749177 + 0.997190i \(0.523869\pi\)
\(164\) −30.8658 −0.0146964
\(165\) 0 0
\(166\) −1841.80 −0.861151
\(167\) −331.570 −0.153639 −0.0768194 0.997045i \(-0.524476\pi\)
−0.0768194 + 0.997045i \(0.524476\pi\)
\(168\) −34.0732 −0.0156476
\(169\) 169.000 0.0769231
\(170\) 0 0
\(171\) 1156.86 0.517353
\(172\) −302.396 −0.134055
\(173\) 234.096 0.102879 0.0514393 0.998676i \(-0.483619\pi\)
0.0514393 + 0.998676i \(0.483619\pi\)
\(174\) −454.534 −0.198035
\(175\) 0 0
\(176\) −817.878 −0.350283
\(177\) 7.08538 0.00300887
\(178\) 3052.08 1.28519
\(179\) 21.5807 0.00901127 0.00450564 0.999990i \(-0.498566\pi\)
0.00450564 + 0.999990i \(0.498566\pi\)
\(180\) 0 0
\(181\) 1132.38 0.465024 0.232512 0.972594i \(-0.425306\pi\)
0.232512 + 0.972594i \(0.425306\pi\)
\(182\) −68.2104 −0.0277807
\(183\) −617.505 −0.249439
\(184\) −732.793 −0.293599
\(185\) 0 0
\(186\) 101.116 0.0398611
\(187\) 223.093 0.0872416
\(188\) −747.140 −0.289845
\(189\) −218.768 −0.0841960
\(190\) 0 0
\(191\) −1547.72 −0.586331 −0.293165 0.956062i \(-0.594709\pi\)
−0.293165 + 0.956062i \(0.594709\pi\)
\(192\) −103.902 −0.0390547
\(193\) 1721.73 0.642140 0.321070 0.947056i \(-0.395958\pi\)
0.321070 + 0.947056i \(0.395958\pi\)
\(194\) −1921.96 −0.711281
\(195\) 0 0
\(196\) −1344.47 −0.489967
\(197\) 44.9786 0.0162670 0.00813349 0.999967i \(-0.497411\pi\)
0.00813349 + 0.999967i \(0.497411\pi\)
\(198\) −2490.88 −0.894036
\(199\) 2577.95 0.918323 0.459161 0.888353i \(-0.348150\pi\)
0.459161 + 0.888353i \(0.348150\pi\)
\(200\) 0 0
\(201\) 159.494 0.0559694
\(202\) −1697.71 −0.591338
\(203\) 367.255 0.126976
\(204\) 28.3415 0.00972697
\(205\) 0 0
\(206\) −3639.78 −1.23105
\(207\) −2231.75 −0.749359
\(208\) −208.000 −0.0693375
\(209\) 2427.14 0.803296
\(210\) 0 0
\(211\) 1434.93 0.468174 0.234087 0.972216i \(-0.424790\pi\)
0.234087 + 0.972216i \(0.424790\pi\)
\(212\) −945.829 −0.306414
\(213\) −1896.97 −0.610225
\(214\) −330.015 −0.105418
\(215\) 0 0
\(216\) −667.110 −0.210144
\(217\) −81.6997 −0.0255582
\(218\) −1841.44 −0.572101
\(219\) −656.463 −0.202556
\(220\) 0 0
\(221\) 56.7363 0.0172692
\(222\) 1225.66 0.370546
\(223\) −5222.63 −1.56831 −0.784155 0.620565i \(-0.786903\pi\)
−0.784155 + 0.620565i \(0.786903\pi\)
\(224\) 83.9512 0.0250412
\(225\) 0 0
\(226\) 1931.97 0.568641
\(227\) 2349.65 0.687011 0.343506 0.939151i \(-0.388386\pi\)
0.343506 + 0.939151i \(0.388386\pi\)
\(228\) 308.342 0.0895632
\(229\) 317.860 0.0917238 0.0458619 0.998948i \(-0.485397\pi\)
0.0458619 + 0.998948i \(0.485397\pi\)
\(230\) 0 0
\(231\) −217.716 −0.0620117
\(232\) 1119.90 0.316919
\(233\) −1295.68 −0.364303 −0.182151 0.983271i \(-0.558306\pi\)
−0.182151 + 0.983271i \(0.558306\pi\)
\(234\) −633.473 −0.176972
\(235\) 0 0
\(236\) −17.4573 −0.00481514
\(237\) 1390.91 0.381221
\(238\) −22.8994 −0.00623676
\(239\) 2149.67 0.581801 0.290900 0.956753i \(-0.406045\pi\)
0.290900 + 0.956753i \(0.406045\pi\)
\(240\) 0 0
\(241\) −6687.39 −1.78744 −0.893719 0.448628i \(-0.851913\pi\)
−0.893719 + 0.448628i \(0.851913\pi\)
\(242\) −2563.97 −0.681068
\(243\) −3099.69 −0.818294
\(244\) 1521.44 0.399181
\(245\) 0 0
\(246\) −25.0550 −0.00649368
\(247\) 617.262 0.159010
\(248\) −249.134 −0.0637905
\(249\) −1495.05 −0.380503
\(250\) 0 0
\(251\) 577.116 0.145128 0.0725642 0.997364i \(-0.476882\pi\)
0.0725642 + 0.997364i \(0.476882\pi\)
\(252\) 255.677 0.0639132
\(253\) −4682.30 −1.16353
\(254\) −2210.92 −0.546164
\(255\) 0 0
\(256\) 256.000 0.0625000
\(257\) −4004.15 −0.971876 −0.485938 0.873993i \(-0.661522\pi\)
−0.485938 + 0.873993i \(0.661522\pi\)
\(258\) −245.466 −0.0592329
\(259\) −990.314 −0.237587
\(260\) 0 0
\(261\) 3410.71 0.808880
\(262\) −1400.04 −0.330133
\(263\) 290.393 0.0680852 0.0340426 0.999420i \(-0.489162\pi\)
0.0340426 + 0.999420i \(0.489162\pi\)
\(264\) −663.902 −0.154774
\(265\) 0 0
\(266\) −249.134 −0.0574263
\(267\) 2477.49 0.567864
\(268\) −392.969 −0.0895688
\(269\) 1004.21 0.227612 0.113806 0.993503i \(-0.463696\pi\)
0.113806 + 0.993503i \(0.463696\pi\)
\(270\) 0 0
\(271\) 5506.55 1.23431 0.617157 0.786840i \(-0.288284\pi\)
0.617157 + 0.786840i \(0.288284\pi\)
\(272\) −69.8292 −0.0155662
\(273\) −55.3689 −0.0122750
\(274\) 2460.06 0.542400
\(275\) 0 0
\(276\) −594.835 −0.129728
\(277\) −4208.88 −0.912950 −0.456475 0.889736i \(-0.650888\pi\)
−0.456475 + 0.889736i \(0.650888\pi\)
\(278\) 2008.10 0.433230
\(279\) −758.748 −0.162814
\(280\) 0 0
\(281\) −6804.56 −1.44458 −0.722288 0.691592i \(-0.756910\pi\)
−0.722288 + 0.691592i \(0.756910\pi\)
\(282\) −606.482 −0.128069
\(283\) −3351.59 −0.703997 −0.351999 0.936001i \(-0.614498\pi\)
−0.351999 + 0.936001i \(0.614498\pi\)
\(284\) 4673.84 0.976554
\(285\) 0 0
\(286\) −1329.05 −0.274785
\(287\) 20.2439 0.00416363
\(288\) 779.658 0.159520
\(289\) −4893.95 −0.996123
\(290\) 0 0
\(291\) −1560.13 −0.314282
\(292\) 1617.43 0.324153
\(293\) −3486.87 −0.695239 −0.347620 0.937636i \(-0.613010\pi\)
−0.347620 + 0.937636i \(0.613010\pi\)
\(294\) −1091.36 −0.216494
\(295\) 0 0
\(296\) −3019.85 −0.592991
\(297\) −4262.61 −0.832801
\(298\) −4621.62 −0.898399
\(299\) −1190.79 −0.230318
\(300\) 0 0
\(301\) 198.332 0.0379790
\(302\) −4537.67 −0.864614
\(303\) −1378.09 −0.261285
\(304\) −759.707 −0.143330
\(305\) 0 0
\(306\) −212.668 −0.0397301
\(307\) 8145.25 1.51425 0.757124 0.653271i \(-0.226604\pi\)
0.757124 + 0.653271i \(0.226604\pi\)
\(308\) 536.421 0.0992383
\(309\) −2954.54 −0.543942
\(310\) 0 0
\(311\) −511.038 −0.0931779 −0.0465889 0.998914i \(-0.514835\pi\)
−0.0465889 + 0.998914i \(0.514835\pi\)
\(312\) −168.841 −0.0306371
\(313\) −3285.96 −0.593397 −0.296699 0.954971i \(-0.595886\pi\)
−0.296699 + 0.954971i \(0.595886\pi\)
\(314\) −3887.24 −0.698630
\(315\) 0 0
\(316\) −3426.99 −0.610074
\(317\) 8375.89 1.48403 0.742014 0.670385i \(-0.233871\pi\)
0.742014 + 0.670385i \(0.233871\pi\)
\(318\) −767.765 −0.135390
\(319\) 7155.81 1.25595
\(320\) 0 0
\(321\) −267.886 −0.0465792
\(322\) 480.616 0.0831791
\(323\) 207.226 0.0356977
\(324\) 2089.83 0.358338
\(325\) 0 0
\(326\) 623.628 0.105950
\(327\) −1494.77 −0.252785
\(328\) 61.7317 0.0103920
\(329\) 490.026 0.0821155
\(330\) 0 0
\(331\) −1475.80 −0.245068 −0.122534 0.992464i \(-0.539102\pi\)
−0.122534 + 0.992464i \(0.539102\pi\)
\(332\) 3683.59 0.608926
\(333\) −9197.09 −1.51351
\(334\) 663.140 0.108639
\(335\) 0 0
\(336\) 68.1464 0.0110646
\(337\) 9267.32 1.49799 0.748996 0.662575i \(-0.230536\pi\)
0.748996 + 0.662575i \(0.230536\pi\)
\(338\) −338.000 −0.0543928
\(339\) 1568.25 0.251256
\(340\) 0 0
\(341\) −1591.89 −0.252802
\(342\) −2313.72 −0.365823
\(343\) 1781.65 0.280466
\(344\) 604.793 0.0947914
\(345\) 0 0
\(346\) −468.192 −0.0727461
\(347\) −12251.7 −1.89541 −0.947703 0.319152i \(-0.896602\pi\)
−0.947703 + 0.319152i \(0.896602\pi\)
\(348\) 909.067 0.140032
\(349\) 9704.59 1.48847 0.744233 0.667920i \(-0.232815\pi\)
0.744233 + 0.667920i \(0.232815\pi\)
\(350\) 0 0
\(351\) −1084.05 −0.164850
\(352\) 1635.76 0.247688
\(353\) −10183.3 −1.53542 −0.767711 0.640797i \(-0.778604\pi\)
−0.767711 + 0.640797i \(0.778604\pi\)
\(354\) −14.1708 −0.00212759
\(355\) 0 0
\(356\) −6104.16 −0.908763
\(357\) −18.5883 −0.00275574
\(358\) −43.1614 −0.00637193
\(359\) 8393.64 1.23398 0.616991 0.786970i \(-0.288351\pi\)
0.616991 + 0.786970i \(0.288351\pi\)
\(360\) 0 0
\(361\) −4604.49 −0.671306
\(362\) −2264.77 −0.328822
\(363\) −2081.27 −0.300933
\(364\) 136.421 0.0196439
\(365\) 0 0
\(366\) 1235.01 0.176380
\(367\) −1694.93 −0.241075 −0.120538 0.992709i \(-0.538462\pi\)
−0.120538 + 0.992709i \(0.538462\pi\)
\(368\) 1465.59 0.207606
\(369\) 188.006 0.0265236
\(370\) 0 0
\(371\) 620.340 0.0868098
\(372\) −202.232 −0.0281861
\(373\) 4925.86 0.683784 0.341892 0.939739i \(-0.388932\pi\)
0.341892 + 0.939739i \(0.388932\pi\)
\(374\) −446.186 −0.0616891
\(375\) 0 0
\(376\) 1494.28 0.204951
\(377\) 1819.84 0.248612
\(378\) 437.537 0.0595356
\(379\) 4563.89 0.618552 0.309276 0.950972i \(-0.399913\pi\)
0.309276 + 0.950972i \(0.399913\pi\)
\(380\) 0 0
\(381\) −1794.69 −0.241325
\(382\) 3095.44 0.414598
\(383\) 6385.74 0.851948 0.425974 0.904735i \(-0.359932\pi\)
0.425974 + 0.904735i \(0.359932\pi\)
\(384\) 207.805 0.0276159
\(385\) 0 0
\(386\) −3443.46 −0.454061
\(387\) 1841.92 0.241938
\(388\) 3843.91 0.502952
\(389\) −12304.3 −1.60374 −0.801870 0.597498i \(-0.796162\pi\)
−0.801870 + 0.597498i \(0.796162\pi\)
\(390\) 0 0
\(391\) −399.768 −0.0517063
\(392\) 2688.94 0.346459
\(393\) −1136.46 −0.145870
\(394\) −89.9572 −0.0115025
\(395\) 0 0
\(396\) 4981.76 0.632179
\(397\) 3593.57 0.454298 0.227149 0.973860i \(-0.427060\pi\)
0.227149 + 0.973860i \(0.427060\pi\)
\(398\) −5155.91 −0.649352
\(399\) −202.232 −0.0253740
\(400\) 0 0
\(401\) 5943.15 0.740116 0.370058 0.929009i \(-0.379338\pi\)
0.370058 + 0.929009i \(0.379338\pi\)
\(402\) −318.988 −0.0395763
\(403\) −404.843 −0.0500414
\(404\) 3395.41 0.418139
\(405\) 0 0
\(406\) −734.509 −0.0897859
\(407\) −19295.9 −2.35003
\(408\) −56.6830 −0.00687801
\(409\) −3673.76 −0.444146 −0.222073 0.975030i \(-0.571282\pi\)
−0.222073 + 0.975030i \(0.571282\pi\)
\(410\) 0 0
\(411\) 1996.92 0.239662
\(412\) 7279.55 0.870480
\(413\) 11.4497 0.00136417
\(414\) 4463.50 0.529877
\(415\) 0 0
\(416\) 416.000 0.0490290
\(417\) 1630.05 0.191424
\(418\) −4854.28 −0.568016
\(419\) −6367.72 −0.742443 −0.371221 0.928544i \(-0.621061\pi\)
−0.371221 + 0.928544i \(0.621061\pi\)
\(420\) 0 0
\(421\) −5184.48 −0.600180 −0.300090 0.953911i \(-0.597017\pi\)
−0.300090 + 0.953911i \(0.597017\pi\)
\(422\) −2869.86 −0.331049
\(423\) 4550.89 0.523102
\(424\) 1891.66 0.216668
\(425\) 0 0
\(426\) 3793.93 0.431495
\(427\) −997.864 −0.113091
\(428\) 660.030 0.0745415
\(429\) −1078.84 −0.121415
\(430\) 0 0
\(431\) 6252.06 0.698727 0.349363 0.936987i \(-0.386398\pi\)
0.349363 + 0.936987i \(0.386398\pi\)
\(432\) 1334.22 0.148594
\(433\) 13563.3 1.50533 0.752667 0.658402i \(-0.228767\pi\)
0.752667 + 0.658402i \(0.228767\pi\)
\(434\) 163.399 0.0180724
\(435\) 0 0
\(436\) 3682.88 0.404536
\(437\) −4349.28 −0.476097
\(438\) 1312.93 0.143228
\(439\) 4955.82 0.538789 0.269394 0.963030i \(-0.413176\pi\)
0.269394 + 0.963030i \(0.413176\pi\)
\(440\) 0 0
\(441\) 8189.27 0.884275
\(442\) −113.473 −0.0122112
\(443\) 10721.6 1.14988 0.574942 0.818194i \(-0.305025\pi\)
0.574942 + 0.818194i \(0.305025\pi\)
\(444\) −2451.33 −0.262016
\(445\) 0 0
\(446\) 10445.3 1.10896
\(447\) −3751.54 −0.396961
\(448\) −167.902 −0.0177068
\(449\) −3704.31 −0.389348 −0.194674 0.980868i \(-0.562365\pi\)
−0.194674 + 0.980868i \(0.562365\pi\)
\(450\) 0 0
\(451\) 394.445 0.0411834
\(452\) −3863.94 −0.402090
\(453\) −3683.40 −0.382033
\(454\) −4699.30 −0.485790
\(455\) 0 0
\(456\) −616.683 −0.0633308
\(457\) −6710.74 −0.686904 −0.343452 0.939170i \(-0.611596\pi\)
−0.343452 + 0.939170i \(0.611596\pi\)
\(458\) −635.719 −0.0648585
\(459\) −363.936 −0.0370089
\(460\) 0 0
\(461\) −977.491 −0.0987555 −0.0493777 0.998780i \(-0.515724\pi\)
−0.0493777 + 0.998780i \(0.515724\pi\)
\(462\) 435.433 0.0438489
\(463\) 14489.1 1.45435 0.727176 0.686452i \(-0.240833\pi\)
0.727176 + 0.686452i \(0.240833\pi\)
\(464\) −2239.80 −0.224096
\(465\) 0 0
\(466\) 2591.35 0.257601
\(467\) −14849.7 −1.47144 −0.735721 0.677285i \(-0.763156\pi\)
−0.735721 + 0.677285i \(0.763156\pi\)
\(468\) 1266.95 0.125138
\(469\) 257.736 0.0253756
\(470\) 0 0
\(471\) −3155.42 −0.308692
\(472\) 34.9146 0.00340482
\(473\) 3864.43 0.375659
\(474\) −2781.82 −0.269564
\(475\) 0 0
\(476\) 45.7988 0.00441005
\(477\) 5761.12 0.553006
\(478\) −4299.33 −0.411395
\(479\) 8109.85 0.773588 0.386794 0.922166i \(-0.373582\pi\)
0.386794 + 0.922166i \(0.373582\pi\)
\(480\) 0 0
\(481\) −4907.26 −0.465181
\(482\) 13374.8 1.26391
\(483\) 390.134 0.0367530
\(484\) 5127.94 0.481588
\(485\) 0 0
\(486\) 6199.38 0.578621
\(487\) −1215.92 −0.113138 −0.0565692 0.998399i \(-0.518016\pi\)
−0.0565692 + 0.998399i \(0.518016\pi\)
\(488\) −3042.88 −0.282264
\(489\) 506.222 0.0468143
\(490\) 0 0
\(491\) −12639.4 −1.16173 −0.580866 0.814000i \(-0.697286\pi\)
−0.580866 + 0.814000i \(0.697286\pi\)
\(492\) 50.1099 0.00459173
\(493\) 610.953 0.0558132
\(494\) −1234.52 −0.112437
\(495\) 0 0
\(496\) 498.268 0.0451067
\(497\) −3065.43 −0.276666
\(498\) 2990.11 0.269056
\(499\) 2658.21 0.238473 0.119236 0.992866i \(-0.461955\pi\)
0.119236 + 0.992866i \(0.461955\pi\)
\(500\) 0 0
\(501\) 538.296 0.0480026
\(502\) −1154.23 −0.102621
\(503\) 18698.8 1.65753 0.828764 0.559599i \(-0.189045\pi\)
0.828764 + 0.559599i \(0.189045\pi\)
\(504\) −511.354 −0.0451935
\(505\) 0 0
\(506\) 9364.61 0.822742
\(507\) −274.367 −0.0240337
\(508\) 4421.85 0.386196
\(509\) −20005.8 −1.74212 −0.871062 0.491173i \(-0.836568\pi\)
−0.871062 + 0.491173i \(0.836568\pi\)
\(510\) 0 0
\(511\) −1060.82 −0.0918354
\(512\) −512.000 −0.0441942
\(513\) −3959.44 −0.340767
\(514\) 8008.30 0.687220
\(515\) 0 0
\(516\) 490.933 0.0418840
\(517\) 9547.96 0.812222
\(518\) 1980.63 0.168000
\(519\) −380.049 −0.0321432
\(520\) 0 0
\(521\) −9981.25 −0.839321 −0.419661 0.907681i \(-0.637851\pi\)
−0.419661 + 0.907681i \(0.637851\pi\)
\(522\) −6821.42 −0.571964
\(523\) 398.152 0.0332887 0.0166443 0.999861i \(-0.494702\pi\)
0.0166443 + 0.999861i \(0.494702\pi\)
\(524\) 2800.08 0.233439
\(525\) 0 0
\(526\) −580.786 −0.0481435
\(527\) −135.913 −0.0112343
\(528\) 1327.80 0.109442
\(529\) −3776.61 −0.310398
\(530\) 0 0
\(531\) 106.334 0.00869020
\(532\) 498.268 0.0406065
\(533\) 100.314 0.00815212
\(534\) −4954.98 −0.401541
\(535\) 0 0
\(536\) 785.939 0.0633347
\(537\) −35.0358 −0.00281546
\(538\) −2008.41 −0.160946
\(539\) 17181.4 1.37302
\(540\) 0 0
\(541\) 7263.34 0.577219 0.288609 0.957447i \(-0.406807\pi\)
0.288609 + 0.957447i \(0.406807\pi\)
\(542\) −11013.1 −0.872792
\(543\) −1838.40 −0.145291
\(544\) 139.658 0.0110070
\(545\) 0 0
\(546\) 110.738 0.00867975
\(547\) 16741.6 1.30863 0.654315 0.756222i \(-0.272957\pi\)
0.654315 + 0.756222i \(0.272957\pi\)
\(548\) −4920.12 −0.383535
\(549\) −9267.21 −0.720428
\(550\) 0 0
\(551\) 6646.86 0.513912
\(552\) 1189.67 0.0917314
\(553\) 2247.66 0.172839
\(554\) 8417.76 0.645553
\(555\) 0 0
\(556\) −4016.20 −0.306340
\(557\) −6000.76 −0.456482 −0.228241 0.973605i \(-0.573297\pi\)
−0.228241 + 0.973605i \(0.573297\pi\)
\(558\) 1517.50 0.115127
\(559\) 982.788 0.0743605
\(560\) 0 0
\(561\) −362.186 −0.0272576
\(562\) 13609.1 1.02147
\(563\) −147.660 −0.0110535 −0.00552674 0.999985i \(-0.501759\pi\)
−0.00552674 + 0.999985i \(0.501759\pi\)
\(564\) 1212.96 0.0905585
\(565\) 0 0
\(566\) 6703.18 0.497801
\(567\) −1370.65 −0.101520
\(568\) −9347.68 −0.690528
\(569\) −19161.2 −1.41174 −0.705868 0.708343i \(-0.749443\pi\)
−0.705868 + 0.708343i \(0.749443\pi\)
\(570\) 0 0
\(571\) 20439.8 1.49804 0.749019 0.662549i \(-0.230525\pi\)
0.749019 + 0.662549i \(0.230525\pi\)
\(572\) 2658.10 0.194302
\(573\) 2512.69 0.183192
\(574\) −40.4879 −0.00294413
\(575\) 0 0
\(576\) −1559.32 −0.112798
\(577\) 22889.0 1.65144 0.825720 0.564081i \(-0.190769\pi\)
0.825720 + 0.564081i \(0.190769\pi\)
\(578\) 9787.91 0.704365
\(579\) −2795.19 −0.200629
\(580\) 0 0
\(581\) −2415.95 −0.172514
\(582\) 3120.25 0.222231
\(583\) 12087.1 0.858655
\(584\) −3234.85 −0.229211
\(585\) 0 0
\(586\) 6973.74 0.491608
\(587\) −1492.73 −0.104960 −0.0524799 0.998622i \(-0.516713\pi\)
−0.0524799 + 0.998622i \(0.516713\pi\)
\(588\) 2182.71 0.153084
\(589\) −1478.66 −0.103442
\(590\) 0 0
\(591\) −73.0217 −0.00508242
\(592\) 6039.71 0.419308
\(593\) 23920.6 1.65650 0.828249 0.560360i \(-0.189337\pi\)
0.828249 + 0.560360i \(0.189337\pi\)
\(594\) 8525.23 0.588879
\(595\) 0 0
\(596\) 9243.23 0.635264
\(597\) −4185.24 −0.286919
\(598\) 2381.58 0.162859
\(599\) −23867.0 −1.62801 −0.814005 0.580857i \(-0.802717\pi\)
−0.814005 + 0.580857i \(0.802717\pi\)
\(600\) 0 0
\(601\) −6618.71 −0.449222 −0.224611 0.974448i \(-0.572111\pi\)
−0.224611 + 0.974448i \(0.572111\pi\)
\(602\) −396.665 −0.0268552
\(603\) 2393.61 0.161651
\(604\) 9075.34 0.611374
\(605\) 0 0
\(606\) 2756.19 0.184756
\(607\) 13982.7 0.934994 0.467497 0.883995i \(-0.345156\pi\)
0.467497 + 0.883995i \(0.345156\pi\)
\(608\) 1519.41 0.101349
\(609\) −596.229 −0.0396723
\(610\) 0 0
\(611\) 2428.21 0.160777
\(612\) 425.336 0.0280934
\(613\) −4043.90 −0.266446 −0.133223 0.991086i \(-0.542533\pi\)
−0.133223 + 0.991086i \(0.542533\pi\)
\(614\) −16290.5 −1.07074
\(615\) 0 0
\(616\) −1072.84 −0.0701721
\(617\) −2871.83 −0.187384 −0.0936918 0.995601i \(-0.529867\pi\)
−0.0936918 + 0.995601i \(0.529867\pi\)
\(618\) 5909.09 0.384625
\(619\) 26324.3 1.70931 0.854656 0.519195i \(-0.173768\pi\)
0.854656 + 0.519195i \(0.173768\pi\)
\(620\) 0 0
\(621\) 7638.33 0.493584
\(622\) 1022.08 0.0658867
\(623\) 4003.53 0.257461
\(624\) 337.683 0.0216637
\(625\) 0 0
\(626\) 6571.91 0.419595
\(627\) −3940.40 −0.250980
\(628\) 7774.48 0.494006
\(629\) −1647.45 −0.104433
\(630\) 0 0
\(631\) −17428.2 −1.09953 −0.549766 0.835319i \(-0.685283\pi\)
−0.549766 + 0.835319i \(0.685283\pi\)
\(632\) 6853.99 0.431388
\(633\) −2329.57 −0.146275
\(634\) −16751.8 −1.04937
\(635\) 0 0
\(636\) 1535.53 0.0957354
\(637\) 4369.53 0.271785
\(638\) −14311.6 −0.888092
\(639\) −28468.8 −1.76245
\(640\) 0 0
\(641\) 22541.7 1.38899 0.694496 0.719496i \(-0.255627\pi\)
0.694496 + 0.719496i \(0.255627\pi\)
\(642\) 535.772 0.0329365
\(643\) 21498.3 1.31852 0.659262 0.751913i \(-0.270869\pi\)
0.659262 + 0.751913i \(0.270869\pi\)
\(644\) −961.232 −0.0588165
\(645\) 0 0
\(646\) −414.451 −0.0252421
\(647\) 8290.26 0.503746 0.251873 0.967760i \(-0.418953\pi\)
0.251873 + 0.967760i \(0.418953\pi\)
\(648\) −4179.66 −0.253383
\(649\) 223.093 0.0134933
\(650\) 0 0
\(651\) 132.637 0.00798536
\(652\) −1247.26 −0.0749177
\(653\) 8650.10 0.518383 0.259192 0.965826i \(-0.416544\pi\)
0.259192 + 0.965826i \(0.416544\pi\)
\(654\) 2989.53 0.178746
\(655\) 0 0
\(656\) −123.463 −0.00734822
\(657\) −9851.88 −0.585020
\(658\) −980.052 −0.0580644
\(659\) −29128.3 −1.72182 −0.860908 0.508761i \(-0.830104\pi\)
−0.860908 + 0.508761i \(0.830104\pi\)
\(660\) 0 0
\(661\) −14221.5 −0.836839 −0.418420 0.908254i \(-0.637416\pi\)
−0.418420 + 0.908254i \(0.637416\pi\)
\(662\) 2951.61 0.173289
\(663\) −92.1099 −0.00539555
\(664\) −7367.18 −0.430576
\(665\) 0 0
\(666\) 18394.2 1.07021
\(667\) −12822.8 −0.744376
\(668\) −1326.28 −0.0768194
\(669\) 8478.81 0.490000
\(670\) 0 0
\(671\) −19443.0 −1.11861
\(672\) −136.293 −0.00782382
\(673\) −33065.1 −1.89386 −0.946929 0.321444i \(-0.895832\pi\)
−0.946929 + 0.321444i \(0.895832\pi\)
\(674\) −18534.6 −1.05924
\(675\) 0 0
\(676\) 676.000 0.0384615
\(677\) 24785.0 1.40704 0.703520 0.710675i \(-0.251610\pi\)
0.703520 + 0.710675i \(0.251610\pi\)
\(678\) −3136.51 −0.177665
\(679\) −2521.10 −0.142491
\(680\) 0 0
\(681\) −3814.60 −0.214648
\(682\) 3183.77 0.178758
\(683\) 8376.31 0.469269 0.234634 0.972084i \(-0.424611\pi\)
0.234634 + 0.972084i \(0.424611\pi\)
\(684\) 4627.44 0.258676
\(685\) 0 0
\(686\) −3563.30 −0.198320
\(687\) −516.037 −0.0286580
\(688\) −1209.59 −0.0670276
\(689\) 3073.95 0.169968
\(690\) 0 0
\(691\) −1387.54 −0.0763883 −0.0381942 0.999270i \(-0.512161\pi\)
−0.0381942 + 0.999270i \(0.512161\pi\)
\(692\) 936.384 0.0514393
\(693\) −3267.38 −0.179102
\(694\) 24503.4 1.34026
\(695\) 0 0
\(696\) −1818.13 −0.0990175
\(697\) 33.6772 0.00183015
\(698\) −19409.2 −1.05250
\(699\) 2103.50 0.113822
\(700\) 0 0
\(701\) −23975.7 −1.29180 −0.645898 0.763424i \(-0.723517\pi\)
−0.645898 + 0.763424i \(0.723517\pi\)
\(702\) 2168.11 0.116567
\(703\) −17923.5 −0.961588
\(704\) −3271.51 −0.175142
\(705\) 0 0
\(706\) 20366.7 1.08571
\(707\) −2226.95 −0.118462
\(708\) 28.3415 0.00150443
\(709\) −6875.84 −0.364214 −0.182107 0.983279i \(-0.558292\pi\)
−0.182107 + 0.983279i \(0.558292\pi\)
\(710\) 0 0
\(711\) 20874.1 1.10104
\(712\) 12208.3 0.642593
\(713\) 2852.56 0.149830
\(714\) 37.1766 0.00194860
\(715\) 0 0
\(716\) 86.3228 0.00450564
\(717\) −3489.93 −0.181777
\(718\) −16787.3 −0.872557
\(719\) 35132.8 1.82230 0.911149 0.412078i \(-0.135197\pi\)
0.911149 + 0.412078i \(0.135197\pi\)
\(720\) 0 0
\(721\) −4774.43 −0.246615
\(722\) 9208.98 0.474685
\(723\) 10856.8 0.558463
\(724\) 4529.53 0.232512
\(725\) 0 0
\(726\) 4162.55 0.212791
\(727\) −21820.6 −1.11318 −0.556589 0.830788i \(-0.687890\pi\)
−0.556589 + 0.830788i \(0.687890\pi\)
\(728\) −272.841 −0.0138904
\(729\) −9074.07 −0.461011
\(730\) 0 0
\(731\) 329.939 0.0166939
\(732\) −2470.02 −0.124719
\(733\) 39336.5 1.98216 0.991081 0.133258i \(-0.0425440\pi\)
0.991081 + 0.133258i \(0.0425440\pi\)
\(734\) 3389.86 0.170466
\(735\) 0 0
\(736\) −2931.17 −0.146799
\(737\) 5021.89 0.250996
\(738\) −376.013 −0.0187550
\(739\) 16015.2 0.797198 0.398599 0.917125i \(-0.369497\pi\)
0.398599 + 0.917125i \(0.369497\pi\)
\(740\) 0 0
\(741\) −1002.11 −0.0496807
\(742\) −1240.68 −0.0613838
\(743\) −7885.18 −0.389340 −0.194670 0.980869i \(-0.562364\pi\)
−0.194670 + 0.980869i \(0.562364\pi\)
\(744\) 404.463 0.0199306
\(745\) 0 0
\(746\) −9851.72 −0.483508
\(747\) −22437.1 −1.09897
\(748\) 892.372 0.0436208
\(749\) −432.893 −0.0211183
\(750\) 0 0
\(751\) −22509.9 −1.09374 −0.546870 0.837218i \(-0.684181\pi\)
−0.546870 + 0.837218i \(0.684181\pi\)
\(752\) −2988.56 −0.144922
\(753\) −936.933 −0.0453436
\(754\) −3639.68 −0.175795
\(755\) 0 0
\(756\) −875.073 −0.0420980
\(757\) 11376.9 0.546234 0.273117 0.961981i \(-0.411945\pi\)
0.273117 + 0.961981i \(0.411945\pi\)
\(758\) −9127.78 −0.437382
\(759\) 7601.61 0.363532
\(760\) 0 0
\(761\) −1967.75 −0.0937329 −0.0468665 0.998901i \(-0.514924\pi\)
−0.0468665 + 0.998901i \(0.514924\pi\)
\(762\) 3589.38 0.170642
\(763\) −2415.48 −0.114609
\(764\) −6190.88 −0.293165
\(765\) 0 0
\(766\) −12771.5 −0.602418
\(767\) 56.7363 0.00267096
\(768\) −415.610 −0.0195274
\(769\) −29055.2 −1.36250 −0.681248 0.732053i \(-0.738562\pi\)
−0.681248 + 0.732053i \(0.738562\pi\)
\(770\) 0 0
\(771\) 6500.64 0.303651
\(772\) 6886.93 0.321070
\(773\) −17339.6 −0.806809 −0.403404 0.915022i \(-0.632173\pi\)
−0.403404 + 0.915022i \(0.632173\pi\)
\(774\) −3683.84 −0.171076
\(775\) 0 0
\(776\) −7687.83 −0.355640
\(777\) 1607.75 0.0742313
\(778\) 24608.7 1.13402
\(779\) 366.391 0.0168515
\(780\) 0 0
\(781\) −59728.6 −2.73657
\(782\) 799.537 0.0365619
\(783\) −11673.4 −0.532789
\(784\) −5377.88 −0.244984
\(785\) 0 0
\(786\) 2272.93 0.103146
\(787\) 20499.1 0.928482 0.464241 0.885709i \(-0.346327\pi\)
0.464241 + 0.885709i \(0.346327\pi\)
\(788\) 179.914 0.00813349
\(789\) −471.446 −0.0212724
\(790\) 0 0
\(791\) 2534.24 0.113916
\(792\) −9963.52 −0.447018
\(793\) −4944.68 −0.221426
\(794\) −7187.14 −0.321237
\(795\) 0 0
\(796\) 10311.8 0.459161
\(797\) −20639.2 −0.917289 −0.458644 0.888620i \(-0.651665\pi\)
−0.458644 + 0.888620i \(0.651665\pi\)
\(798\) 404.463 0.0179422
\(799\) 815.191 0.0360944
\(800\) 0 0
\(801\) 37180.9 1.64010
\(802\) −11886.3 −0.523341
\(803\) −20669.7 −0.908364
\(804\) 637.976 0.0279847
\(805\) 0 0
\(806\) 809.686 0.0353846
\(807\) −1630.31 −0.0711146
\(808\) −6790.83 −0.295669
\(809\) −24472.6 −1.06355 −0.531773 0.846887i \(-0.678474\pi\)
−0.531773 + 0.846887i \(0.678474\pi\)
\(810\) 0 0
\(811\) −928.998 −0.0402238 −0.0201119 0.999798i \(-0.506402\pi\)
−0.0201119 + 0.999798i \(0.506402\pi\)
\(812\) 1469.02 0.0634882
\(813\) −8939.75 −0.385647
\(814\) 38591.7 1.66172
\(815\) 0 0
\(816\) 113.366 0.00486349
\(817\) 3589.57 0.153713
\(818\) 7347.52 0.314059
\(819\) −830.950 −0.0354527
\(820\) 0 0
\(821\) 3761.43 0.159896 0.0799481 0.996799i \(-0.474525\pi\)
0.0799481 + 0.996799i \(0.474525\pi\)
\(822\) −3993.85 −0.169466
\(823\) 5718.32 0.242197 0.121098 0.992640i \(-0.461358\pi\)
0.121098 + 0.992640i \(0.461358\pi\)
\(824\) −14559.1 −0.615523
\(825\) 0 0
\(826\) −22.8994 −0.000964616 0
\(827\) −30541.0 −1.28418 −0.642089 0.766630i \(-0.721932\pi\)
−0.642089 + 0.766630i \(0.721932\pi\)
\(828\) −8927.00 −0.374680
\(829\) −41273.1 −1.72916 −0.864581 0.502493i \(-0.832416\pi\)
−0.864581 + 0.502493i \(0.832416\pi\)
\(830\) 0 0
\(831\) 6833.02 0.285240
\(832\) −832.000 −0.0346688
\(833\) 1466.93 0.0610156
\(834\) −3260.10 −0.135357
\(835\) 0 0
\(836\) 9708.56 0.401648
\(837\) 2596.87 0.107241
\(838\) 12735.4 0.524986
\(839\) 38391.2 1.57975 0.789875 0.613268i \(-0.210145\pi\)
0.789875 + 0.613268i \(0.210145\pi\)
\(840\) 0 0
\(841\) −4792.41 −0.196499
\(842\) 10369.0 0.424392
\(843\) 11047.0 0.451341
\(844\) 5739.72 0.234087
\(845\) 0 0
\(846\) −9101.78 −0.369889
\(847\) −3363.26 −0.136438
\(848\) −3783.32 −0.153207
\(849\) 5441.22 0.219955
\(850\) 0 0
\(851\) 34577.0 1.39281
\(852\) −7587.87 −0.305113
\(853\) −10176.9 −0.408498 −0.204249 0.978919i \(-0.565475\pi\)
−0.204249 + 0.978919i \(0.565475\pi\)
\(854\) 1995.73 0.0799677
\(855\) 0 0
\(856\) −1320.06 −0.0527088
\(857\) −20605.8 −0.821331 −0.410666 0.911786i \(-0.634704\pi\)
−0.410666 + 0.911786i \(0.634704\pi\)
\(858\) 2157.68 0.0858532
\(859\) 23472.9 0.932345 0.466173 0.884694i \(-0.345633\pi\)
0.466173 + 0.884694i \(0.345633\pi\)
\(860\) 0 0
\(861\) −32.8655 −0.00130088
\(862\) −12504.1 −0.494074
\(863\) −22922.3 −0.904153 −0.452076 0.891979i \(-0.649317\pi\)
−0.452076 + 0.891979i \(0.649317\pi\)
\(864\) −2668.44 −0.105072
\(865\) 0 0
\(866\) −27126.6 −1.06443
\(867\) 7945.21 0.311227
\(868\) −326.799 −0.0127791
\(869\) 43794.7 1.70959
\(870\) 0 0
\(871\) 1277.15 0.0496838
\(872\) −7365.76 −0.286050
\(873\) −23413.6 −0.907709
\(874\) 8698.56 0.336651
\(875\) 0 0
\(876\) −2625.85 −0.101278
\(877\) −12732.4 −0.490243 −0.245122 0.969492i \(-0.578828\pi\)
−0.245122 + 0.969492i \(0.578828\pi\)
\(878\) −9911.63 −0.380981
\(879\) 5660.85 0.217219
\(880\) 0 0
\(881\) 32910.4 1.25855 0.629273 0.777184i \(-0.283353\pi\)
0.629273 + 0.777184i \(0.283353\pi\)
\(882\) −16378.5 −0.625277
\(883\) −17053.9 −0.649952 −0.324976 0.945722i \(-0.605356\pi\)
−0.324976 + 0.945722i \(0.605356\pi\)
\(884\) 226.945 0.00863460
\(885\) 0 0
\(886\) −21443.2 −0.813090
\(887\) −7601.23 −0.287739 −0.143869 0.989597i \(-0.545954\pi\)
−0.143869 + 0.989597i \(0.545954\pi\)
\(888\) 4902.66 0.185273
\(889\) −2900.15 −0.109413
\(890\) 0 0
\(891\) −26706.6 −1.00416
\(892\) −20890.5 −0.784155
\(893\) 8868.87 0.332347
\(894\) 7503.08 0.280694
\(895\) 0 0
\(896\) 335.805 0.0125206
\(897\) 1933.22 0.0719601
\(898\) 7408.63 0.275311
\(899\) −4359.47 −0.161731
\(900\) 0 0
\(901\) 1031.98 0.0381578
\(902\) −788.890 −0.0291210
\(903\) −321.988 −0.0118661
\(904\) 7727.89 0.284321
\(905\) 0 0
\(906\) 7366.79 0.270138
\(907\) 49076.2 1.79664 0.898318 0.439347i \(-0.144790\pi\)
0.898318 + 0.439347i \(0.144790\pi\)
\(908\) 9398.59 0.343506
\(909\) −20681.7 −0.754643
\(910\) 0 0
\(911\) −22427.3 −0.815642 −0.407821 0.913062i \(-0.633711\pi\)
−0.407821 + 0.913062i \(0.633711\pi\)
\(912\) 1233.37 0.0447816
\(913\) −47073.9 −1.70637
\(914\) 13421.5 0.485715
\(915\) 0 0
\(916\) 1271.44 0.0458619
\(917\) −1836.48 −0.0661353
\(918\) 727.871 0.0261692
\(919\) 47062.8 1.68929 0.844645 0.535327i \(-0.179812\pi\)
0.844645 + 0.535327i \(0.179812\pi\)
\(920\) 0 0
\(921\) −13223.6 −0.473109
\(922\) 1954.98 0.0698307
\(923\) −15190.0 −0.541695
\(924\) −870.866 −0.0310058
\(925\) 0 0
\(926\) −28978.2 −1.02838
\(927\) −44340.4 −1.57101
\(928\) 4479.61 0.158459
\(929\) 18074.8 0.638338 0.319169 0.947698i \(-0.396596\pi\)
0.319169 + 0.947698i \(0.396596\pi\)
\(930\) 0 0
\(931\) 15959.4 0.561814
\(932\) −5182.70 −0.182151
\(933\) 829.658 0.0291123
\(934\) 29699.4 1.04047
\(935\) 0 0
\(936\) −2533.89 −0.0884859
\(937\) 39939.1 1.39248 0.696241 0.717809i \(-0.254855\pi\)
0.696241 + 0.717809i \(0.254855\pi\)
\(938\) −515.473 −0.0179433
\(939\) 5334.67 0.185400
\(940\) 0 0
\(941\) −12975.7 −0.449518 −0.224759 0.974414i \(-0.572159\pi\)
−0.224759 + 0.974414i \(0.572159\pi\)
\(942\) 6310.84 0.218278
\(943\) −706.821 −0.0244085
\(944\) −69.8292 −0.00240757
\(945\) 0 0
\(946\) −7728.85 −0.265631
\(947\) −43713.9 −1.50001 −0.750005 0.661432i \(-0.769949\pi\)
−0.750005 + 0.661432i \(0.769949\pi\)
\(948\) 5563.64 0.190610
\(949\) −5256.64 −0.179808
\(950\) 0 0
\(951\) −13598.0 −0.463667
\(952\) −91.5976 −0.00311838
\(953\) −13116.8 −0.445850 −0.222925 0.974836i \(-0.571561\pi\)
−0.222925 + 0.974836i \(0.571561\pi\)
\(954\) −11522.2 −0.391034
\(955\) 0 0
\(956\) 8598.66 0.290900
\(957\) −11617.3 −0.392407
\(958\) −16219.7 −0.547009
\(959\) 3226.95 0.108659
\(960\) 0 0
\(961\) −28821.2 −0.967446
\(962\) 9814.52 0.328932
\(963\) −4020.30 −0.134530
\(964\) −26749.5 −0.893719
\(965\) 0 0
\(966\) −780.268 −0.0259883
\(967\) −20837.0 −0.692941 −0.346471 0.938061i \(-0.612620\pi\)
−0.346471 + 0.938061i \(0.612620\pi\)
\(968\) −10255.9 −0.340534
\(969\) −336.426 −0.0111533
\(970\) 0 0
\(971\) 36214.0 1.19687 0.598436 0.801170i \(-0.295789\pi\)
0.598436 + 0.801170i \(0.295789\pi\)
\(972\) −12398.8 −0.409147
\(973\) 2634.10 0.0867887
\(974\) 2431.83 0.0800010
\(975\) 0 0
\(976\) 6085.76 0.199590
\(977\) 4171.16 0.136589 0.0682943 0.997665i \(-0.478244\pi\)
0.0682943 + 0.997665i \(0.478244\pi\)
\(978\) −1012.44 −0.0331027
\(979\) 78007.1 2.54660
\(980\) 0 0
\(981\) −22432.7 −0.730093
\(982\) 25278.9 0.821468
\(983\) 45275.4 1.46903 0.734517 0.678590i \(-0.237409\pi\)
0.734517 + 0.678590i \(0.237409\pi\)
\(984\) −100.220 −0.00324684
\(985\) 0 0
\(986\) −1221.91 −0.0394659
\(987\) −795.545 −0.0256560
\(988\) 2469.05 0.0795050
\(989\) −6924.81 −0.222645
\(990\) 0 0
\(991\) −2463.81 −0.0789764 −0.0394882 0.999220i \(-0.512573\pi\)
−0.0394882 + 0.999220i \(0.512573\pi\)
\(992\) −996.537 −0.0318952
\(993\) 2395.93 0.0765686
\(994\) 6130.85 0.195633
\(995\) 0 0
\(996\) −5980.22 −0.190252
\(997\) 29662.7 0.942253 0.471127 0.882066i \(-0.343848\pi\)
0.471127 + 0.882066i \(0.343848\pi\)
\(998\) −5316.42 −0.168626
\(999\) 31477.7 0.996908
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 650.4.a.m.1.1 2
5.2 odd 4 650.4.b.i.599.2 4
5.3 odd 4 650.4.b.i.599.3 4
5.4 even 2 650.4.a.p.1.2 yes 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
650.4.a.m.1.1 2 1.1 even 1 trivial
650.4.a.p.1.2 yes 2 5.4 even 2
650.4.b.i.599.2 4 5.2 odd 4
650.4.b.i.599.3 4 5.3 odd 4