Properties

Label 2-6525-1.1-c1-0-58
Degree $2$
Conductor $6525$
Sign $1$
Analytic cond. $52.1023$
Root an. cond. $7.21819$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.35·2-s + 3.54·4-s − 0.0127·7-s − 3.63·8-s − 0.615·11-s + 3.05·13-s + 0.0301·14-s + 1.46·16-s + 6.63·17-s − 3.54·19-s + 1.44·22-s + 1.27·23-s − 7.19·26-s − 0.0453·28-s + 29-s + 6.68·31-s + 3.81·32-s − 15.6·34-s + 6.22·37-s + 8.33·38-s − 7.00·41-s + 5.31·43-s − 2.18·44-s − 3.00·46-s − 3.22·47-s − 6.99·49-s + 10.8·52-s + ⋯
L(s)  = 1  − 1.66·2-s + 1.77·4-s − 0.00483·7-s − 1.28·8-s − 0.185·11-s + 0.847·13-s + 0.00805·14-s + 0.365·16-s + 1.60·17-s − 0.812·19-s + 0.309·22-s + 0.266·23-s − 1.41·26-s − 0.00856·28-s + 0.185·29-s + 1.20·31-s + 0.674·32-s − 2.67·34-s + 1.02·37-s + 1.35·38-s − 1.09·41-s + 0.809·43-s − 0.328·44-s − 0.442·46-s − 0.469·47-s − 0.999·49-s + 1.50·52-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6525 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6525 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6525\)    =    \(3^{2} \cdot 5^{2} \cdot 29\)
Sign: $1$
Analytic conductor: \(52.1023\)
Root analytic conductor: \(7.21819\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 6525,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.9412456308\)
\(L(\frac12)\) \(\approx\) \(0.9412456308\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 \)
29 \( 1 - T \)
good2 \( 1 + 2.35T + 2T^{2} \)
7 \( 1 + 0.0127T + 7T^{2} \)
11 \( 1 + 0.615T + 11T^{2} \)
13 \( 1 - 3.05T + 13T^{2} \)
17 \( 1 - 6.63T + 17T^{2} \)
19 \( 1 + 3.54T + 19T^{2} \)
23 \( 1 - 1.27T + 23T^{2} \)
31 \( 1 - 6.68T + 31T^{2} \)
37 \( 1 - 6.22T + 37T^{2} \)
41 \( 1 + 7.00T + 41T^{2} \)
43 \( 1 - 5.31T + 43T^{2} \)
47 \( 1 + 3.22T + 47T^{2} \)
53 \( 1 - 3.77T + 53T^{2} \)
59 \( 1 - 8.04T + 59T^{2} \)
61 \( 1 + 0.250T + 61T^{2} \)
67 \( 1 - 2.90T + 67T^{2} \)
71 \( 1 - 14.0T + 71T^{2} \)
73 \( 1 - 8.75T + 73T^{2} \)
79 \( 1 + 8.34T + 79T^{2} \)
83 \( 1 + 16.2T + 83T^{2} \)
89 \( 1 + 15.2T + 89T^{2} \)
97 \( 1 + 9.90T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.300913814670430257468156198250, −7.56985124342910648144388324113, −6.78467118276758417430871435853, −6.20814793780265496058745837943, −5.37984147013073013924446579446, −4.33514444905714353388357482222, −3.32268941657840700235809532326, −2.47285968606597207552342776126, −1.44602056736689249384627155893, −0.70340844892407912700692815584, 0.70340844892407912700692815584, 1.44602056736689249384627155893, 2.47285968606597207552342776126, 3.32268941657840700235809532326, 4.33514444905714353388357482222, 5.37984147013073013924446579446, 6.20814793780265496058745837943, 6.78467118276758417430871435853, 7.56985124342910648144388324113, 8.300913814670430257468156198250

Graph of the $Z$-function along the critical line