Properties

Label 6525.2.a.bp
Level $6525$
Weight $2$
Character orbit 6525.a
Self dual yes
Analytic conductor $52.102$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [6525,2,Mod(1,6525)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6525, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("6525.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 6525 = 3^{2} \cdot 5^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6525.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(52.1023873189\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: 5.5.294577.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 7x^{3} - x^{2} + 7x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 725)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3,\beta_4\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} + ( - \beta_{3} + \beta_{2} + 1) q^{4} + ( - \beta_{4} + \beta_1 + 2) q^{7} + (\beta_{4} - \beta_{3} - \beta_{2} + \beta_1) q^{8} + (\beta_{2} + \beta_1) q^{11} + (2 \beta_{4} + \beta_{2} + 2) q^{13}+ \cdots + ( - 2 \beta_{4} + \beta_{3} + \cdots + 12) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + 4 q^{4} + 10 q^{7} + 3 q^{8} - 2 q^{11} + 8 q^{13} + 13 q^{14} + 6 q^{16} - 3 q^{17} - 4 q^{19} + 16 q^{22} - 3 q^{23} + 4 q^{26} + 10 q^{28} + 5 q^{29} + 5 q^{31} - 4 q^{32} - 9 q^{34} + 4 q^{37}+ \cdots + 51 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{5} - 7x^{3} - x^{2} + 7x + 3 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{4} - \nu^{3} - 6\nu^{2} + 5\nu + 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{4} - \nu^{3} - 7\nu^{2} + 5\nu + 6 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( 2\nu^{4} - \nu^{3} - 13\nu^{2} + 5\nu + 9 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( -\beta_{3} + \beta_{2} + 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{4} - \beta_{3} - \beta_{2} + 5\beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{4} - 7\beta_{3} + 6\beta_{2} + 15 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−2.35417
−0.794018
−0.533733
1.22277
2.45914
−2.35417 0 3.54210 0 0 −0.0127981 −3.63036 0 0
1.2 −0.794018 0 −1.36954 0 0 3.07654 2.67547 0 0
1.3 −0.533733 0 −1.71513 0 0 −1.47609 1.98289 0 0
1.4 1.22277 0 −0.504827 0 0 4.90333 −3.06283 0 0
1.5 2.45914 0 4.04739 0 0 3.50903 5.03483 0 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.5
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(5\) \( -1 \)
\(29\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 6525.2.a.bp 5
3.b odd 2 1 725.2.a.j yes 5
5.b even 2 1 6525.2.a.bo 5
15.d odd 2 1 725.2.a.i 5
15.e even 4 2 725.2.b.g 10
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
725.2.a.i 5 15.d odd 2 1
725.2.a.j yes 5 3.b odd 2 1
725.2.b.g 10 15.e even 4 2
6525.2.a.bo 5 5.b even 2 1
6525.2.a.bp 5 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(6525))\):

\( T_{2}^{5} - 7T_{2}^{3} - T_{2}^{2} + 7T_{2} + 3 \) Copy content Toggle raw display
\( T_{7}^{5} - 10T_{7}^{4} + 26T_{7}^{3} + 11T_{7}^{2} - 78T_{7} - 1 \) Copy content Toggle raw display
\( T_{11}^{5} + 2T_{11}^{4} - 17T_{11}^{3} - 14T_{11}^{2} + 42T_{11} + 27 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{5} - 7 T^{3} + \cdots + 3 \) Copy content Toggle raw display
$3$ \( T^{5} \) Copy content Toggle raw display
$5$ \( T^{5} \) Copy content Toggle raw display
$7$ \( T^{5} - 10 T^{4} + \cdots - 1 \) Copy content Toggle raw display
$11$ \( T^{5} + 2 T^{4} + \cdots + 27 \) Copy content Toggle raw display
$13$ \( T^{5} - 8 T^{4} + \cdots - 431 \) Copy content Toggle raw display
$17$ \( T^{5} + 3 T^{4} + \cdots + 339 \) Copy content Toggle raw display
$19$ \( T^{5} + 4 T^{4} + \cdots - 17 \) Copy content Toggle raw display
$23$ \( T^{5} + 3 T^{4} + \cdots + 123 \) Copy content Toggle raw display
$29$ \( (T - 1)^{5} \) Copy content Toggle raw display
$31$ \( T^{5} - 5 T^{4} + \cdots - 251 \) Copy content Toggle raw display
$37$ \( T^{5} - 4 T^{4} + \cdots - 3691 \) Copy content Toggle raw display
$41$ \( T^{5} - 3 T^{4} + \cdots + 19125 \) Copy content Toggle raw display
$43$ \( T^{5} - 12 T^{4} + \cdots + 197 \) Copy content Toggle raw display
$47$ \( T^{5} - T^{4} + \cdots - 2007 \) Copy content Toggle raw display
$53$ \( T^{5} + 12 T^{4} + \cdots - 9 \) Copy content Toggle raw display
$59$ \( T^{5} - 15 T^{4} + \cdots + 375 \) Copy content Toggle raw display
$61$ \( T^{5} + 7 T^{4} + \cdots + 81 \) Copy content Toggle raw display
$67$ \( T^{5} - 17 T^{4} + \cdots - 1679 \) Copy content Toggle raw display
$71$ \( T^{5} - 17 T^{4} + \cdots - 5121 \) Copy content Toggle raw display
$73$ \( T^{5} - 10 T^{4} + \cdots + 13257 \) Copy content Toggle raw display
$79$ \( T^{5} + 2 T^{4} + \cdots + 66293 \) Copy content Toggle raw display
$83$ \( T^{5} + 19 T^{4} + \cdots + 366867 \) Copy content Toggle raw display
$89$ \( T^{5} + 14 T^{4} + \cdots + 278703 \) Copy content Toggle raw display
$97$ \( T^{5} + 9 T^{4} + \cdots - 48079 \) Copy content Toggle raw display
show more
show less