L(s) = 1 | + 2.43·2-s + 3.94·4-s − 3.59·7-s + 4.75·8-s + 6.58·11-s − 2.25·13-s − 8.77·14-s + 3.69·16-s − 0.256·17-s + 7.95·19-s + 16.0·22-s − 0.961·23-s − 5.50·26-s − 14.2·28-s + 29-s − 3.95·31-s − 0.498·32-s − 0.624·34-s + 3.76·37-s + 19.3·38-s + 5.00·41-s + 6.19·43-s + 26.0·44-s − 2.34·46-s + 7.02·47-s + 5.93·49-s − 8.90·52-s + ⋯ |
L(s) = 1 | + 1.72·2-s + 1.97·4-s − 1.35·7-s + 1.67·8-s + 1.98·11-s − 0.625·13-s − 2.34·14-s + 0.922·16-s − 0.0621·17-s + 1.82·19-s + 3.42·22-s − 0.200·23-s − 1.07·26-s − 2.68·28-s + 0.185·29-s − 0.709·31-s − 0.0881·32-s − 0.107·34-s + 0.619·37-s + 3.14·38-s + 0.781·41-s + 0.945·43-s + 3.92·44-s − 0.345·46-s + 1.02·47-s + 0.848·49-s − 1.23·52-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 6525 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6525 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(5.880392272\) |
\(L(\frac12)\) |
\(\approx\) |
\(5.880392272\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 \) |
| 29 | \( 1 - T \) |
good | 2 | \( 1 - 2.43T + 2T^{2} \) |
| 7 | \( 1 + 3.59T + 7T^{2} \) |
| 11 | \( 1 - 6.58T + 11T^{2} \) |
| 13 | \( 1 + 2.25T + 13T^{2} \) |
| 17 | \( 1 + 0.256T + 17T^{2} \) |
| 19 | \( 1 - 7.95T + 19T^{2} \) |
| 23 | \( 1 + 0.961T + 23T^{2} \) |
| 31 | \( 1 + 3.95T + 31T^{2} \) |
| 37 | \( 1 - 3.76T + 37T^{2} \) |
| 41 | \( 1 - 5.00T + 41T^{2} \) |
| 43 | \( 1 - 6.19T + 43T^{2} \) |
| 47 | \( 1 - 7.02T + 47T^{2} \) |
| 53 | \( 1 + 6.38T + 53T^{2} \) |
| 59 | \( 1 + 3.19T + 59T^{2} \) |
| 61 | \( 1 - 14.4T + 61T^{2} \) |
| 67 | \( 1 - 9.35T + 67T^{2} \) |
| 71 | \( 1 + 11.9T + 71T^{2} \) |
| 73 | \( 1 - 13.4T + 73T^{2} \) |
| 79 | \( 1 + 5.22T + 79T^{2} \) |
| 83 | \( 1 + 0.195T + 83T^{2} \) |
| 89 | \( 1 + 3.72T + 89T^{2} \) |
| 97 | \( 1 - 2.97T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.43328357034537422652993964035, −7.10127228212765051671473877902, −6.31715516608663255864007083989, −5.94134094733814321437273423122, −5.13740710906782927030263719131, −4.23389267909244924575983638435, −3.68011424542833352656275311143, −3.13243776850671181935393376869, −2.26184662368037310433049516375, −0.992921124185419194564028446224,
0.992921124185419194564028446224, 2.26184662368037310433049516375, 3.13243776850671181935393376869, 3.68011424542833352656275311143, 4.23389267909244924575983638435, 5.13740710906782927030263719131, 5.94134094733814321437273423122, 6.31715516608663255864007083989, 7.10127228212765051671473877902, 7.43328357034537422652993964035