Properties

Label 2-3e8-1.1-c1-0-116
Degree $2$
Conductor $6561$
Sign $-1$
Analytic cond. $52.3898$
Root an. cond. $7.23808$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.01·2-s + 2.07·4-s − 2.76·5-s − 0.611·7-s − 0.157·8-s + 5.58·10-s − 3.74·11-s + 3.41·13-s + 1.23·14-s − 3.83·16-s − 7.57·17-s + 0.763·19-s − 5.75·20-s + 7.56·22-s + 2.17·23-s + 2.66·25-s − 6.90·26-s − 1.27·28-s − 4.54·29-s + 8.18·31-s + 8.06·32-s + 15.2·34-s + 1.69·35-s − 4.22·37-s − 1.54·38-s + 0.435·40-s + 9.04·41-s + ⋯
L(s)  = 1  − 1.42·2-s + 1.03·4-s − 1.23·5-s − 0.231·7-s − 0.0556·8-s + 1.76·10-s − 1.12·11-s + 0.948·13-s + 0.329·14-s − 0.959·16-s − 1.83·17-s + 0.175·19-s − 1.28·20-s + 1.61·22-s + 0.453·23-s + 0.532·25-s − 1.35·26-s − 0.240·28-s − 0.843·29-s + 1.47·31-s + 1.42·32-s + 2.62·34-s + 0.286·35-s − 0.694·37-s − 0.250·38-s + 0.0689·40-s + 1.41·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6561 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6561 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6561\)    =    \(3^{8}\)
Sign: $-1$
Analytic conductor: \(52.3898\)
Root analytic conductor: \(7.23808\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 6561,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
good2 \( 1 + 2.01T + 2T^{2} \)
5 \( 1 + 2.76T + 5T^{2} \)
7 \( 1 + 0.611T + 7T^{2} \)
11 \( 1 + 3.74T + 11T^{2} \)
13 \( 1 - 3.41T + 13T^{2} \)
17 \( 1 + 7.57T + 17T^{2} \)
19 \( 1 - 0.763T + 19T^{2} \)
23 \( 1 - 2.17T + 23T^{2} \)
29 \( 1 + 4.54T + 29T^{2} \)
31 \( 1 - 8.18T + 31T^{2} \)
37 \( 1 + 4.22T + 37T^{2} \)
41 \( 1 - 9.04T + 41T^{2} \)
43 \( 1 - 1.75T + 43T^{2} \)
47 \( 1 - 11.7T + 47T^{2} \)
53 \( 1 - 5.60T + 53T^{2} \)
59 \( 1 - 1.51T + 59T^{2} \)
61 \( 1 - 3.02T + 61T^{2} \)
67 \( 1 + 7.65T + 67T^{2} \)
71 \( 1 + 6.78T + 71T^{2} \)
73 \( 1 - 0.572T + 73T^{2} \)
79 \( 1 - 9.21T + 79T^{2} \)
83 \( 1 + 6.18T + 83T^{2} \)
89 \( 1 + 4.60T + 89T^{2} \)
97 \( 1 + 10.5T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.81571614807429208585472248401, −7.23786458788515913146315155683, −6.62983317720914628978835834823, −5.68274680606902871429981855528, −4.55466850911811826553405010601, −4.07968865450269651109739805364, −2.96244484277558539540187457417, −2.13443700139784583025300891157, −0.849289687273241901211436224477, 0, 0.849289687273241901211436224477, 2.13443700139784583025300891157, 2.96244484277558539540187457417, 4.07968865450269651109739805364, 4.55466850911811826553405010601, 5.68274680606902871429981855528, 6.62983317720914628978835834823, 7.23786458788515913146315155683, 7.81571614807429208585472248401

Graph of the $Z$-function along the critical line