Properties

Label 6561.2.a.c.1.14
Level $6561$
Weight $2$
Character 6561.1
Self dual yes
Analytic conductor $52.390$
Analytic rank $1$
Dimension $72$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [6561,2,Mod(1,6561)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6561, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("6561.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 6561 = 3^{8} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6561.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(52.3898487662\)
Analytic rank: \(1\)
Dimension: \(72\)
Twist minimal: no (minimal twist has level 81)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.14
Character \(\chi\) \(=\) 6561.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.01939 q^{2} +2.07795 q^{4} -2.76814 q^{5} -0.611277 q^{7} -0.157420 q^{8} +5.58998 q^{10} -3.74484 q^{11} +3.41992 q^{13} +1.23441 q^{14} -3.83801 q^{16} -7.57368 q^{17} +0.763428 q^{19} -5.75208 q^{20} +7.56230 q^{22} +2.17394 q^{23} +2.66263 q^{25} -6.90616 q^{26} -1.27021 q^{28} -4.54272 q^{29} +8.18558 q^{31} +8.06531 q^{32} +15.2942 q^{34} +1.69210 q^{35} -4.22381 q^{37} -1.54166 q^{38} +0.435762 q^{40} +9.04205 q^{41} +1.75473 q^{43} -7.78160 q^{44} -4.39004 q^{46} +11.7637 q^{47} -6.62634 q^{49} -5.37689 q^{50} +7.10643 q^{52} +5.60125 q^{53} +10.3663 q^{55} +0.0962275 q^{56} +9.17355 q^{58} +1.51320 q^{59} +3.02355 q^{61} -16.5299 q^{62} -8.61101 q^{64} -9.46682 q^{65} -7.65215 q^{67} -15.7378 q^{68} -3.41703 q^{70} -6.78616 q^{71} +0.572436 q^{73} +8.52954 q^{74} +1.58637 q^{76} +2.28913 q^{77} +9.21512 q^{79} +10.6242 q^{80} -18.2595 q^{82} -6.18843 q^{83} +20.9650 q^{85} -3.54350 q^{86} +0.589514 q^{88} -4.60472 q^{89} -2.09052 q^{91} +4.51734 q^{92} -23.7556 q^{94} -2.11328 q^{95} -10.5169 q^{97} +13.3812 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 72 q - 9 q^{2} + 63 q^{4} - 18 q^{5} - 27 q^{8} - 36 q^{11} - 36 q^{14} + 45 q^{16} - 36 q^{17} - 54 q^{20} - 54 q^{23} + 36 q^{25} - 45 q^{26} + 9 q^{28} - 54 q^{29} - 63 q^{32} - 72 q^{35} - 54 q^{38}+ \cdots - 81 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.01939 −1.42793 −0.713964 0.700183i \(-0.753102\pi\)
−0.713964 + 0.700183i \(0.753102\pi\)
\(3\) 0 0
\(4\) 2.07795 1.03898
\(5\) −2.76814 −1.23795 −0.618976 0.785410i \(-0.712452\pi\)
−0.618976 + 0.785410i \(0.712452\pi\)
\(6\) 0 0
\(7\) −0.611277 −0.231041 −0.115521 0.993305i \(-0.536854\pi\)
−0.115521 + 0.993305i \(0.536854\pi\)
\(8\) −0.157420 −0.0556565
\(9\) 0 0
\(10\) 5.58998 1.76771
\(11\) −3.74484 −1.12911 −0.564556 0.825395i \(-0.690952\pi\)
−0.564556 + 0.825395i \(0.690952\pi\)
\(12\) 0 0
\(13\) 3.41992 0.948514 0.474257 0.880386i \(-0.342717\pi\)
0.474257 + 0.880386i \(0.342717\pi\)
\(14\) 1.23441 0.329910
\(15\) 0 0
\(16\) −3.83801 −0.959504
\(17\) −7.57368 −1.83689 −0.918443 0.395553i \(-0.870553\pi\)
−0.918443 + 0.395553i \(0.870553\pi\)
\(18\) 0 0
\(19\) 0.763428 0.175142 0.0875712 0.996158i \(-0.472089\pi\)
0.0875712 + 0.996158i \(0.472089\pi\)
\(20\) −5.75208 −1.28620
\(21\) 0 0
\(22\) 7.56230 1.61229
\(23\) 2.17394 0.453297 0.226649 0.973977i \(-0.427223\pi\)
0.226649 + 0.973977i \(0.427223\pi\)
\(24\) 0 0
\(25\) 2.66263 0.532525
\(26\) −6.90616 −1.35441
\(27\) 0 0
\(28\) −1.27021 −0.240046
\(29\) −4.54272 −0.843563 −0.421781 0.906698i \(-0.638595\pi\)
−0.421781 + 0.906698i \(0.638595\pi\)
\(30\) 0 0
\(31\) 8.18558 1.47017 0.735087 0.677973i \(-0.237142\pi\)
0.735087 + 0.677973i \(0.237142\pi\)
\(32\) 8.06531 1.42576
\(33\) 0 0
\(34\) 15.2942 2.62294
\(35\) 1.69210 0.286018
\(36\) 0 0
\(37\) −4.22381 −0.694390 −0.347195 0.937793i \(-0.612866\pi\)
−0.347195 + 0.937793i \(0.612866\pi\)
\(38\) −1.54166 −0.250091
\(39\) 0 0
\(40\) 0.435762 0.0689001
\(41\) 9.04205 1.41213 0.706065 0.708147i \(-0.250469\pi\)
0.706065 + 0.708147i \(0.250469\pi\)
\(42\) 0 0
\(43\) 1.75473 0.267594 0.133797 0.991009i \(-0.457283\pi\)
0.133797 + 0.991009i \(0.457283\pi\)
\(44\) −7.78160 −1.17312
\(45\) 0 0
\(46\) −4.39004 −0.647276
\(47\) 11.7637 1.71592 0.857959 0.513718i \(-0.171732\pi\)
0.857959 + 0.513718i \(0.171732\pi\)
\(48\) 0 0
\(49\) −6.62634 −0.946620
\(50\) −5.37689 −0.760407
\(51\) 0 0
\(52\) 7.10643 0.985484
\(53\) 5.60125 0.769391 0.384695 0.923044i \(-0.374307\pi\)
0.384695 + 0.923044i \(0.374307\pi\)
\(54\) 0 0
\(55\) 10.3663 1.39779
\(56\) 0.0962275 0.0128589
\(57\) 0 0
\(58\) 9.17355 1.20455
\(59\) 1.51320 0.197002 0.0985008 0.995137i \(-0.468595\pi\)
0.0985008 + 0.995137i \(0.468595\pi\)
\(60\) 0 0
\(61\) 3.02355 0.387126 0.193563 0.981088i \(-0.437996\pi\)
0.193563 + 0.981088i \(0.437996\pi\)
\(62\) −16.5299 −2.09930
\(63\) 0 0
\(64\) −8.61101 −1.07638
\(65\) −9.46682 −1.17421
\(66\) 0 0
\(67\) −7.65215 −0.934859 −0.467430 0.884030i \(-0.654820\pi\)
−0.467430 + 0.884030i \(0.654820\pi\)
\(68\) −15.7378 −1.90848
\(69\) 0 0
\(70\) −3.41703 −0.408413
\(71\) −6.78616 −0.805368 −0.402684 0.915339i \(-0.631923\pi\)
−0.402684 + 0.915339i \(0.631923\pi\)
\(72\) 0 0
\(73\) 0.572436 0.0669985 0.0334993 0.999439i \(-0.489335\pi\)
0.0334993 + 0.999439i \(0.489335\pi\)
\(74\) 8.52954 0.991539
\(75\) 0 0
\(76\) 1.58637 0.181969
\(77\) 2.28913 0.260871
\(78\) 0 0
\(79\) 9.21512 1.03678 0.518391 0.855144i \(-0.326531\pi\)
0.518391 + 0.855144i \(0.326531\pi\)
\(80\) 10.6242 1.18782
\(81\) 0 0
\(82\) −18.2595 −2.01642
\(83\) −6.18843 −0.679269 −0.339634 0.940558i \(-0.610303\pi\)
−0.339634 + 0.940558i \(0.610303\pi\)
\(84\) 0 0
\(85\) 20.9650 2.27398
\(86\) −3.54350 −0.382105
\(87\) 0 0
\(88\) 0.589514 0.0628424
\(89\) −4.60472 −0.488099 −0.244050 0.969763i \(-0.578476\pi\)
−0.244050 + 0.969763i \(0.578476\pi\)
\(90\) 0 0
\(91\) −2.09052 −0.219146
\(92\) 4.51734 0.470965
\(93\) 0 0
\(94\) −23.7556 −2.45021
\(95\) −2.11328 −0.216818
\(96\) 0 0
\(97\) −10.5169 −1.06783 −0.533913 0.845540i \(-0.679279\pi\)
−0.533913 + 0.845540i \(0.679279\pi\)
\(98\) 13.3812 1.35170
\(99\) 0 0
\(100\) 5.53281 0.553281
\(101\) 2.44854 0.243639 0.121819 0.992552i \(-0.461127\pi\)
0.121819 + 0.992552i \(0.461127\pi\)
\(102\) 0 0
\(103\) 17.0579 1.68076 0.840381 0.541996i \(-0.182331\pi\)
0.840381 + 0.541996i \(0.182331\pi\)
\(104\) −0.538364 −0.0527910
\(105\) 0 0
\(106\) −11.3111 −1.09863
\(107\) −0.804111 −0.0777364 −0.0388682 0.999244i \(-0.512375\pi\)
−0.0388682 + 0.999244i \(0.512375\pi\)
\(108\) 0 0
\(109\) −4.22270 −0.404461 −0.202230 0.979338i \(-0.564819\pi\)
−0.202230 + 0.979338i \(0.564819\pi\)
\(110\) −20.9336 −1.99594
\(111\) 0 0
\(112\) 2.34609 0.221685
\(113\) −12.3432 −1.16115 −0.580575 0.814207i \(-0.697172\pi\)
−0.580575 + 0.814207i \(0.697172\pi\)
\(114\) 0 0
\(115\) −6.01777 −0.561160
\(116\) −9.43957 −0.876442
\(117\) 0 0
\(118\) −3.05574 −0.281304
\(119\) 4.62962 0.424396
\(120\) 0 0
\(121\) 3.02381 0.274892
\(122\) −6.10574 −0.552788
\(123\) 0 0
\(124\) 17.0093 1.52748
\(125\) 6.47019 0.578711
\(126\) 0 0
\(127\) 9.97518 0.885154 0.442577 0.896731i \(-0.354064\pi\)
0.442577 + 0.896731i \(0.354064\pi\)
\(128\) 1.25841 0.111228
\(129\) 0 0
\(130\) 19.1172 1.67669
\(131\) 5.49315 0.479939 0.239969 0.970780i \(-0.422863\pi\)
0.239969 + 0.970780i \(0.422863\pi\)
\(132\) 0 0
\(133\) −0.466666 −0.0404651
\(134\) 15.4527 1.33491
\(135\) 0 0
\(136\) 1.19225 0.102235
\(137\) −15.2306 −1.30124 −0.650618 0.759405i \(-0.725490\pi\)
−0.650618 + 0.759405i \(0.725490\pi\)
\(138\) 0 0
\(139\) 16.0163 1.35848 0.679241 0.733915i \(-0.262309\pi\)
0.679241 + 0.733915i \(0.262309\pi\)
\(140\) 3.51612 0.297166
\(141\) 0 0
\(142\) 13.7039 1.15001
\(143\) −12.8070 −1.07098
\(144\) 0 0
\(145\) 12.5749 1.04429
\(146\) −1.15597 −0.0956690
\(147\) 0 0
\(148\) −8.77688 −0.721455
\(149\) 8.84036 0.724231 0.362115 0.932133i \(-0.382055\pi\)
0.362115 + 0.932133i \(0.382055\pi\)
\(150\) 0 0
\(151\) 0.987846 0.0803898 0.0401949 0.999192i \(-0.487202\pi\)
0.0401949 + 0.999192i \(0.487202\pi\)
\(152\) −0.120179 −0.00974781
\(153\) 0 0
\(154\) −4.62267 −0.372505
\(155\) −22.6589 −1.82000
\(156\) 0 0
\(157\) 18.1985 1.45240 0.726201 0.687483i \(-0.241284\pi\)
0.726201 + 0.687483i \(0.241284\pi\)
\(158\) −18.6090 −1.48045
\(159\) 0 0
\(160\) −22.3259 −1.76502
\(161\) −1.32888 −0.104730
\(162\) 0 0
\(163\) 17.1469 1.34305 0.671524 0.740983i \(-0.265640\pi\)
0.671524 + 0.740983i \(0.265640\pi\)
\(164\) 18.7890 1.46717
\(165\) 0 0
\(166\) 12.4969 0.969947
\(167\) 5.90116 0.456646 0.228323 0.973585i \(-0.426676\pi\)
0.228323 + 0.973585i \(0.426676\pi\)
\(168\) 0 0
\(169\) −1.30418 −0.100321
\(170\) −42.3367 −3.24707
\(171\) 0 0
\(172\) 3.64625 0.278024
\(173\) 8.99272 0.683704 0.341852 0.939754i \(-0.388946\pi\)
0.341852 + 0.939754i \(0.388946\pi\)
\(174\) 0 0
\(175\) −1.62760 −0.123035
\(176\) 14.3727 1.08339
\(177\) 0 0
\(178\) 9.29875 0.696971
\(179\) 1.28893 0.0963390 0.0481695 0.998839i \(-0.484661\pi\)
0.0481695 + 0.998839i \(0.484661\pi\)
\(180\) 0 0
\(181\) 3.71663 0.276255 0.138128 0.990414i \(-0.455892\pi\)
0.138128 + 0.990414i \(0.455892\pi\)
\(182\) 4.22158 0.312924
\(183\) 0 0
\(184\) −0.342222 −0.0252289
\(185\) 11.6921 0.859622
\(186\) 0 0
\(187\) 28.3622 2.07405
\(188\) 24.4445 1.78280
\(189\) 0 0
\(190\) 4.26755 0.309600
\(191\) 7.29004 0.527489 0.263744 0.964593i \(-0.415042\pi\)
0.263744 + 0.964593i \(0.415042\pi\)
\(192\) 0 0
\(193\) −9.62715 −0.692978 −0.346489 0.938054i \(-0.612626\pi\)
−0.346489 + 0.938054i \(0.612626\pi\)
\(194\) 21.2377 1.52478
\(195\) 0 0
\(196\) −13.7692 −0.983517
\(197\) −4.93670 −0.351725 −0.175862 0.984415i \(-0.556271\pi\)
−0.175862 + 0.984415i \(0.556271\pi\)
\(198\) 0 0
\(199\) 2.51732 0.178448 0.0892239 0.996012i \(-0.471561\pi\)
0.0892239 + 0.996012i \(0.471561\pi\)
\(200\) −0.419151 −0.0296385
\(201\) 0 0
\(202\) −4.94457 −0.347899
\(203\) 2.77686 0.194898
\(204\) 0 0
\(205\) −25.0297 −1.74815
\(206\) −34.4466 −2.40001
\(207\) 0 0
\(208\) −13.1257 −0.910103
\(209\) −2.85891 −0.197755
\(210\) 0 0
\(211\) 6.98781 0.481061 0.240530 0.970642i \(-0.422679\pi\)
0.240530 + 0.970642i \(0.422679\pi\)
\(212\) 11.6391 0.799379
\(213\) 0 0
\(214\) 1.62382 0.111002
\(215\) −4.85735 −0.331269
\(216\) 0 0
\(217\) −5.00366 −0.339670
\(218\) 8.52729 0.577541
\(219\) 0 0
\(220\) 21.5406 1.45227
\(221\) −25.9013 −1.74231
\(222\) 0 0
\(223\) −17.9982 −1.20525 −0.602625 0.798025i \(-0.705878\pi\)
−0.602625 + 0.798025i \(0.705878\pi\)
\(224\) −4.93014 −0.329409
\(225\) 0 0
\(226\) 24.9258 1.65804
\(227\) −0.613511 −0.0407201 −0.0203601 0.999793i \(-0.506481\pi\)
−0.0203601 + 0.999793i \(0.506481\pi\)
\(228\) 0 0
\(229\) −4.99523 −0.330094 −0.165047 0.986286i \(-0.552778\pi\)
−0.165047 + 0.986286i \(0.552778\pi\)
\(230\) 12.1523 0.801296
\(231\) 0 0
\(232\) 0.715117 0.0469497
\(233\) 13.1575 0.861975 0.430988 0.902358i \(-0.358165\pi\)
0.430988 + 0.902358i \(0.358165\pi\)
\(234\) 0 0
\(235\) −32.5637 −2.12422
\(236\) 3.14436 0.204680
\(237\) 0 0
\(238\) −9.34902 −0.606007
\(239\) −9.09818 −0.588512 −0.294256 0.955727i \(-0.595072\pi\)
−0.294256 + 0.955727i \(0.595072\pi\)
\(240\) 0 0
\(241\) −14.2501 −0.917931 −0.458965 0.888454i \(-0.651780\pi\)
−0.458965 + 0.888454i \(0.651780\pi\)
\(242\) −6.10626 −0.392526
\(243\) 0 0
\(244\) 6.28280 0.402215
\(245\) 18.3427 1.17187
\(246\) 0 0
\(247\) 2.61086 0.166125
\(248\) −1.28858 −0.0818247
\(249\) 0 0
\(250\) −13.0659 −0.826358
\(251\) 8.59452 0.542482 0.271241 0.962512i \(-0.412566\pi\)
0.271241 + 0.962512i \(0.412566\pi\)
\(252\) 0 0
\(253\) −8.14104 −0.511823
\(254\) −20.1438 −1.26394
\(255\) 0 0
\(256\) 14.6808 0.917550
\(257\) −22.1967 −1.38459 −0.692295 0.721614i \(-0.743401\pi\)
−0.692295 + 0.721614i \(0.743401\pi\)
\(258\) 0 0
\(259\) 2.58192 0.160433
\(260\) −19.6716 −1.21998
\(261\) 0 0
\(262\) −11.0928 −0.685318
\(263\) 5.26252 0.324501 0.162251 0.986750i \(-0.448125\pi\)
0.162251 + 0.986750i \(0.448125\pi\)
\(264\) 0 0
\(265\) −15.5051 −0.952469
\(266\) 0.942383 0.0577812
\(267\) 0 0
\(268\) −15.9008 −0.971297
\(269\) 6.22846 0.379756 0.189878 0.981808i \(-0.439191\pi\)
0.189878 + 0.981808i \(0.439191\pi\)
\(270\) 0 0
\(271\) 7.31870 0.444579 0.222290 0.974981i \(-0.428647\pi\)
0.222290 + 0.974981i \(0.428647\pi\)
\(272\) 29.0679 1.76250
\(273\) 0 0
\(274\) 30.7565 1.85807
\(275\) −9.97110 −0.601280
\(276\) 0 0
\(277\) −18.6314 −1.11945 −0.559725 0.828678i \(-0.689093\pi\)
−0.559725 + 0.828678i \(0.689093\pi\)
\(278\) −32.3432 −1.93981
\(279\) 0 0
\(280\) −0.266372 −0.0159187
\(281\) −1.02194 −0.0609639 −0.0304819 0.999535i \(-0.509704\pi\)
−0.0304819 + 0.999535i \(0.509704\pi\)
\(282\) 0 0
\(283\) −10.9633 −0.651701 −0.325850 0.945421i \(-0.605651\pi\)
−0.325850 + 0.945421i \(0.605651\pi\)
\(284\) −14.1013 −0.836759
\(285\) 0 0
\(286\) 25.8624 1.52928
\(287\) −5.52720 −0.326260
\(288\) 0 0
\(289\) 40.3606 2.37415
\(290\) −25.3937 −1.49117
\(291\) 0 0
\(292\) 1.18950 0.0696099
\(293\) 24.2795 1.41843 0.709213 0.704994i \(-0.249051\pi\)
0.709213 + 0.704994i \(0.249051\pi\)
\(294\) 0 0
\(295\) −4.18875 −0.243878
\(296\) 0.664914 0.0386473
\(297\) 0 0
\(298\) −17.8522 −1.03415
\(299\) 7.43468 0.429959
\(300\) 0 0
\(301\) −1.07263 −0.0618253
\(302\) −1.99485 −0.114791
\(303\) 0 0
\(304\) −2.93005 −0.168050
\(305\) −8.36963 −0.479244
\(306\) 0 0
\(307\) −24.8301 −1.41713 −0.708563 0.705648i \(-0.750656\pi\)
−0.708563 + 0.705648i \(0.750656\pi\)
\(308\) 4.75672 0.271039
\(309\) 0 0
\(310\) 45.7572 2.59883
\(311\) 1.85071 0.104944 0.0524720 0.998622i \(-0.483290\pi\)
0.0524720 + 0.998622i \(0.483290\pi\)
\(312\) 0 0
\(313\) −6.95154 −0.392924 −0.196462 0.980511i \(-0.562945\pi\)
−0.196462 + 0.980511i \(0.562945\pi\)
\(314\) −36.7500 −2.07392
\(315\) 0 0
\(316\) 19.1486 1.07719
\(317\) 26.0373 1.46240 0.731200 0.682163i \(-0.238961\pi\)
0.731200 + 0.682163i \(0.238961\pi\)
\(318\) 0 0
\(319\) 17.0118 0.952476
\(320\) 23.8365 1.33250
\(321\) 0 0
\(322\) 2.68353 0.149547
\(323\) −5.78196 −0.321717
\(324\) 0 0
\(325\) 9.10595 0.505107
\(326\) −34.6263 −1.91777
\(327\) 0 0
\(328\) −1.42340 −0.0785942
\(329\) −7.19091 −0.396448
\(330\) 0 0
\(331\) −26.0355 −1.43104 −0.715519 0.698593i \(-0.753810\pi\)
−0.715519 + 0.698593i \(0.753810\pi\)
\(332\) −12.8593 −0.705745
\(333\) 0 0
\(334\) −11.9168 −0.652057
\(335\) 21.1823 1.15731
\(336\) 0 0
\(337\) −15.0311 −0.818797 −0.409398 0.912356i \(-0.634261\pi\)
−0.409398 + 0.912356i \(0.634261\pi\)
\(338\) 2.63365 0.143252
\(339\) 0 0
\(340\) 43.5644 2.36261
\(341\) −30.6537 −1.65999
\(342\) 0 0
\(343\) 8.32947 0.449749
\(344\) −0.276231 −0.0148934
\(345\) 0 0
\(346\) −18.1599 −0.976280
\(347\) −25.4221 −1.36473 −0.682365 0.731012i \(-0.739049\pi\)
−0.682365 + 0.731012i \(0.739049\pi\)
\(348\) 0 0
\(349\) −29.2656 −1.56655 −0.783275 0.621676i \(-0.786452\pi\)
−0.783275 + 0.621676i \(0.786452\pi\)
\(350\) 3.28677 0.175685
\(351\) 0 0
\(352\) −30.2033 −1.60984
\(353\) 28.6917 1.52710 0.763552 0.645747i \(-0.223454\pi\)
0.763552 + 0.645747i \(0.223454\pi\)
\(354\) 0 0
\(355\) 18.7851 0.997007
\(356\) −9.56840 −0.507124
\(357\) 0 0
\(358\) −2.60285 −0.137565
\(359\) −20.8561 −1.10075 −0.550373 0.834919i \(-0.685514\pi\)
−0.550373 + 0.834919i \(0.685514\pi\)
\(360\) 0 0
\(361\) −18.4172 −0.969325
\(362\) −7.50535 −0.394472
\(363\) 0 0
\(364\) −4.34400 −0.227687
\(365\) −1.58458 −0.0829410
\(366\) 0 0
\(367\) −34.5668 −1.80437 −0.902185 0.431348i \(-0.858038\pi\)
−0.902185 + 0.431348i \(0.858038\pi\)
\(368\) −8.34360 −0.434940
\(369\) 0 0
\(370\) −23.6110 −1.22748
\(371\) −3.42392 −0.177761
\(372\) 0 0
\(373\) −9.36943 −0.485131 −0.242565 0.970135i \(-0.577989\pi\)
−0.242565 + 0.970135i \(0.577989\pi\)
\(374\) −57.2744 −2.96159
\(375\) 0 0
\(376\) −1.85185 −0.0955020
\(377\) −15.5357 −0.800131
\(378\) 0 0
\(379\) −1.92754 −0.0990111 −0.0495056 0.998774i \(-0.515765\pi\)
−0.0495056 + 0.998774i \(0.515765\pi\)
\(380\) −4.39130 −0.225269
\(381\) 0 0
\(382\) −14.7215 −0.753215
\(383\) 19.4920 0.995997 0.497999 0.867178i \(-0.334068\pi\)
0.497999 + 0.867178i \(0.334068\pi\)
\(384\) 0 0
\(385\) −6.33666 −0.322946
\(386\) 19.4410 0.989522
\(387\) 0 0
\(388\) −21.8536 −1.10945
\(389\) −9.13991 −0.463412 −0.231706 0.972786i \(-0.574431\pi\)
−0.231706 + 0.972786i \(0.574431\pi\)
\(390\) 0 0
\(391\) −16.4647 −0.832655
\(392\) 1.04312 0.0526855
\(393\) 0 0
\(394\) 9.96914 0.502238
\(395\) −25.5088 −1.28349
\(396\) 0 0
\(397\) 33.3487 1.67372 0.836862 0.547414i \(-0.184388\pi\)
0.836862 + 0.547414i \(0.184388\pi\)
\(398\) −5.08345 −0.254811
\(399\) 0 0
\(400\) −10.2192 −0.510960
\(401\) −3.54872 −0.177214 −0.0886072 0.996067i \(-0.528242\pi\)
−0.0886072 + 0.996067i \(0.528242\pi\)
\(402\) 0 0
\(403\) 27.9940 1.39448
\(404\) 5.08795 0.253135
\(405\) 0 0
\(406\) −5.60758 −0.278300
\(407\) 15.8175 0.784044
\(408\) 0 0
\(409\) −32.0349 −1.58402 −0.792011 0.610507i \(-0.790966\pi\)
−0.792011 + 0.610507i \(0.790966\pi\)
\(410\) 50.5448 2.49623
\(411\) 0 0
\(412\) 35.4455 1.74627
\(413\) −0.924984 −0.0455155
\(414\) 0 0
\(415\) 17.1305 0.840902
\(416\) 27.5827 1.35235
\(417\) 0 0
\(418\) 5.77328 0.282380
\(419\) −14.8348 −0.724727 −0.362363 0.932037i \(-0.618030\pi\)
−0.362363 + 0.932037i \(0.618030\pi\)
\(420\) 0 0
\(421\) −15.5797 −0.759310 −0.379655 0.925128i \(-0.623957\pi\)
−0.379655 + 0.925128i \(0.623957\pi\)
\(422\) −14.1111 −0.686920
\(423\) 0 0
\(424\) −0.881750 −0.0428216
\(425\) −20.1659 −0.978188
\(426\) 0 0
\(427\) −1.84823 −0.0894421
\(428\) −1.67091 −0.0807663
\(429\) 0 0
\(430\) 9.80891 0.473028
\(431\) 1.29743 0.0624948 0.0312474 0.999512i \(-0.490052\pi\)
0.0312474 + 0.999512i \(0.490052\pi\)
\(432\) 0 0
\(433\) 17.5301 0.842444 0.421222 0.906958i \(-0.361601\pi\)
0.421222 + 0.906958i \(0.361601\pi\)
\(434\) 10.1044 0.485025
\(435\) 0 0
\(436\) −8.77457 −0.420226
\(437\) 1.65964 0.0793916
\(438\) 0 0
\(439\) 21.7182 1.03655 0.518277 0.855213i \(-0.326574\pi\)
0.518277 + 0.855213i \(0.326574\pi\)
\(440\) −1.63186 −0.0777958
\(441\) 0 0
\(442\) 52.3050 2.48790
\(443\) 9.14365 0.434428 0.217214 0.976124i \(-0.430303\pi\)
0.217214 + 0.976124i \(0.430303\pi\)
\(444\) 0 0
\(445\) 12.7465 0.604244
\(446\) 36.3455 1.72101
\(447\) 0 0
\(448\) 5.26371 0.248687
\(449\) 12.4224 0.586248 0.293124 0.956074i \(-0.405305\pi\)
0.293124 + 0.956074i \(0.405305\pi\)
\(450\) 0 0
\(451\) −33.8610 −1.59445
\(452\) −25.6486 −1.20641
\(453\) 0 0
\(454\) 1.23892 0.0581454
\(455\) 5.78685 0.271292
\(456\) 0 0
\(457\) −18.6949 −0.874510 −0.437255 0.899338i \(-0.644049\pi\)
−0.437255 + 0.899338i \(0.644049\pi\)
\(458\) 10.0873 0.471350
\(459\) 0 0
\(460\) −12.5047 −0.583033
\(461\) 41.0819 1.91337 0.956687 0.291117i \(-0.0940269\pi\)
0.956687 + 0.291117i \(0.0940269\pi\)
\(462\) 0 0
\(463\) −4.12981 −0.191929 −0.0959643 0.995385i \(-0.530593\pi\)
−0.0959643 + 0.995385i \(0.530593\pi\)
\(464\) 17.4350 0.809401
\(465\) 0 0
\(466\) −26.5702 −1.23084
\(467\) −25.2765 −1.16966 −0.584828 0.811157i \(-0.698838\pi\)
−0.584828 + 0.811157i \(0.698838\pi\)
\(468\) 0 0
\(469\) 4.67759 0.215991
\(470\) 65.7591 3.03324
\(471\) 0 0
\(472\) −0.238208 −0.0109644
\(473\) −6.57119 −0.302144
\(474\) 0 0
\(475\) 2.03272 0.0932677
\(476\) 9.62013 0.440938
\(477\) 0 0
\(478\) 18.3728 0.840353
\(479\) −20.8021 −0.950471 −0.475236 0.879859i \(-0.657637\pi\)
−0.475236 + 0.879859i \(0.657637\pi\)
\(480\) 0 0
\(481\) −14.4451 −0.658639
\(482\) 28.7766 1.31074
\(483\) 0 0
\(484\) 6.28334 0.285606
\(485\) 29.1122 1.32192
\(486\) 0 0
\(487\) −6.60060 −0.299102 −0.149551 0.988754i \(-0.547783\pi\)
−0.149551 + 0.988754i \(0.547783\pi\)
\(488\) −0.475968 −0.0215461
\(489\) 0 0
\(490\) −37.0411 −1.67335
\(491\) −36.5453 −1.64927 −0.824633 0.565668i \(-0.808618\pi\)
−0.824633 + 0.565668i \(0.808618\pi\)
\(492\) 0 0
\(493\) 34.4051 1.54953
\(494\) −5.27236 −0.237214
\(495\) 0 0
\(496\) −31.4164 −1.41064
\(497\) 4.14822 0.186073
\(498\) 0 0
\(499\) 36.3939 1.62922 0.814608 0.580012i \(-0.196952\pi\)
0.814608 + 0.580012i \(0.196952\pi\)
\(500\) 13.4448 0.601268
\(501\) 0 0
\(502\) −17.3557 −0.774624
\(503\) 7.96032 0.354933 0.177467 0.984127i \(-0.443210\pi\)
0.177467 + 0.984127i \(0.443210\pi\)
\(504\) 0 0
\(505\) −6.77791 −0.301613
\(506\) 16.4400 0.730846
\(507\) 0 0
\(508\) 20.7280 0.919654
\(509\) −1.66881 −0.0739687 −0.0369843 0.999316i \(-0.511775\pi\)
−0.0369843 + 0.999316i \(0.511775\pi\)
\(510\) 0 0
\(511\) −0.349917 −0.0154794
\(512\) −32.1631 −1.42142
\(513\) 0 0
\(514\) 44.8239 1.97710
\(515\) −47.2187 −2.08070
\(516\) 0 0
\(517\) −44.0533 −1.93746
\(518\) −5.21391 −0.229086
\(519\) 0 0
\(520\) 1.49027 0.0653527
\(521\) −35.0886 −1.53726 −0.768629 0.639695i \(-0.779061\pi\)
−0.768629 + 0.639695i \(0.779061\pi\)
\(522\) 0 0
\(523\) −12.0344 −0.526226 −0.263113 0.964765i \(-0.584749\pi\)
−0.263113 + 0.964765i \(0.584749\pi\)
\(524\) 11.4145 0.498645
\(525\) 0 0
\(526\) −10.6271 −0.463364
\(527\) −61.9949 −2.70054
\(528\) 0 0
\(529\) −18.2740 −0.794522
\(530\) 31.3109 1.36006
\(531\) 0 0
\(532\) −0.969711 −0.0420423
\(533\) 30.9230 1.33943
\(534\) 0 0
\(535\) 2.22590 0.0962339
\(536\) 1.20460 0.0520310
\(537\) 0 0
\(538\) −12.5777 −0.542264
\(539\) 24.8146 1.06884
\(540\) 0 0
\(541\) 19.6261 0.843793 0.421896 0.906644i \(-0.361365\pi\)
0.421896 + 0.906644i \(0.361365\pi\)
\(542\) −14.7793 −0.634827
\(543\) 0 0
\(544\) −61.0840 −2.61896
\(545\) 11.6890 0.500703
\(546\) 0 0
\(547\) 8.72390 0.373007 0.186504 0.982454i \(-0.440284\pi\)
0.186504 + 0.982454i \(0.440284\pi\)
\(548\) −31.6484 −1.35195
\(549\) 0 0
\(550\) 20.1356 0.858584
\(551\) −3.46804 −0.147744
\(552\) 0 0
\(553\) −5.63300 −0.239539
\(554\) 37.6241 1.59849
\(555\) 0 0
\(556\) 33.2811 1.41143
\(557\) 19.8028 0.839070 0.419535 0.907739i \(-0.362193\pi\)
0.419535 + 0.907739i \(0.362193\pi\)
\(558\) 0 0
\(559\) 6.00104 0.253817
\(560\) −6.49432 −0.274435
\(561\) 0 0
\(562\) 2.06370 0.0870520
\(563\) 33.9565 1.43110 0.715548 0.698564i \(-0.246177\pi\)
0.715548 + 0.698564i \(0.246177\pi\)
\(564\) 0 0
\(565\) 34.1677 1.43745
\(566\) 22.1392 0.930581
\(567\) 0 0
\(568\) 1.06828 0.0448240
\(569\) −19.2392 −0.806547 −0.403274 0.915079i \(-0.632128\pi\)
−0.403274 + 0.915079i \(0.632128\pi\)
\(570\) 0 0
\(571\) −2.48692 −0.104074 −0.0520371 0.998645i \(-0.516571\pi\)
−0.0520371 + 0.998645i \(0.516571\pi\)
\(572\) −26.6124 −1.11272
\(573\) 0 0
\(574\) 11.1616 0.465876
\(575\) 5.78838 0.241392
\(576\) 0 0
\(577\) 25.4917 1.06123 0.530616 0.847612i \(-0.321961\pi\)
0.530616 + 0.847612i \(0.321961\pi\)
\(578\) −81.5039 −3.39012
\(579\) 0 0
\(580\) 26.1301 1.08499
\(581\) 3.78285 0.156939
\(582\) 0 0
\(583\) −20.9758 −0.868728
\(584\) −0.0901130 −0.00372890
\(585\) 0 0
\(586\) −49.0300 −2.02541
\(587\) 0.895381 0.0369563 0.0184782 0.999829i \(-0.494118\pi\)
0.0184782 + 0.999829i \(0.494118\pi\)
\(588\) 0 0
\(589\) 6.24910 0.257490
\(590\) 8.45874 0.348241
\(591\) 0 0
\(592\) 16.2110 0.666270
\(593\) 32.4289 1.33170 0.665848 0.746088i \(-0.268070\pi\)
0.665848 + 0.746088i \(0.268070\pi\)
\(594\) 0 0
\(595\) −12.8155 −0.525382
\(596\) 18.3699 0.752459
\(597\) 0 0
\(598\) −15.0136 −0.613950
\(599\) −42.0938 −1.71991 −0.859954 0.510372i \(-0.829508\pi\)
−0.859954 + 0.510372i \(0.829508\pi\)
\(600\) 0 0
\(601\) −30.9396 −1.26205 −0.631026 0.775762i \(-0.717366\pi\)
−0.631026 + 0.775762i \(0.717366\pi\)
\(602\) 2.16606 0.0882820
\(603\) 0 0
\(604\) 2.05270 0.0835231
\(605\) −8.37034 −0.340303
\(606\) 0 0
\(607\) −14.9743 −0.607789 −0.303894 0.952706i \(-0.598287\pi\)
−0.303894 + 0.952706i \(0.598287\pi\)
\(608\) 6.15728 0.249711
\(609\) 0 0
\(610\) 16.9016 0.684325
\(611\) 40.2310 1.62757
\(612\) 0 0
\(613\) −18.3536 −0.741295 −0.370647 0.928774i \(-0.620864\pi\)
−0.370647 + 0.928774i \(0.620864\pi\)
\(614\) 50.1417 2.02355
\(615\) 0 0
\(616\) −0.360356 −0.0145192
\(617\) −32.7753 −1.31949 −0.659743 0.751492i \(-0.729335\pi\)
−0.659743 + 0.751492i \(0.729335\pi\)
\(618\) 0 0
\(619\) −6.00233 −0.241254 −0.120627 0.992698i \(-0.538491\pi\)
−0.120627 + 0.992698i \(0.538491\pi\)
\(620\) −47.0841 −1.89094
\(621\) 0 0
\(622\) −3.73731 −0.149852
\(623\) 2.81476 0.112771
\(624\) 0 0
\(625\) −31.2236 −1.24894
\(626\) 14.0379 0.561067
\(627\) 0 0
\(628\) 37.8157 1.50901
\(629\) 31.9898 1.27552
\(630\) 0 0
\(631\) −24.4380 −0.972860 −0.486430 0.873720i \(-0.661701\pi\)
−0.486430 + 0.873720i \(0.661701\pi\)
\(632\) −1.45065 −0.0577037
\(633\) 0 0
\(634\) −52.5796 −2.08820
\(635\) −27.6127 −1.09578
\(636\) 0 0
\(637\) −22.6615 −0.897882
\(638\) −34.3535 −1.36007
\(639\) 0 0
\(640\) −3.48345 −0.137695
\(641\) 10.3151 0.407423 0.203712 0.979031i \(-0.434699\pi\)
0.203712 + 0.979031i \(0.434699\pi\)
\(642\) 0 0
\(643\) −43.3068 −1.70785 −0.853926 0.520394i \(-0.825785\pi\)
−0.853926 + 0.520394i \(0.825785\pi\)
\(644\) −2.76135 −0.108812
\(645\) 0 0
\(646\) 11.6761 0.459388
\(647\) 6.50021 0.255550 0.127775 0.991803i \(-0.459217\pi\)
0.127775 + 0.991803i \(0.459217\pi\)
\(648\) 0 0
\(649\) −5.66668 −0.222437
\(650\) −18.3885 −0.721257
\(651\) 0 0
\(652\) 35.6304 1.39540
\(653\) 2.97710 0.116503 0.0582514 0.998302i \(-0.481448\pi\)
0.0582514 + 0.998302i \(0.481448\pi\)
\(654\) 0 0
\(655\) −15.2058 −0.594141
\(656\) −34.7035 −1.35494
\(657\) 0 0
\(658\) 14.5213 0.566099
\(659\) −28.1099 −1.09501 −0.547503 0.836804i \(-0.684422\pi\)
−0.547503 + 0.836804i \(0.684422\pi\)
\(660\) 0 0
\(661\) −3.25065 −0.126435 −0.0632177 0.998000i \(-0.520136\pi\)
−0.0632177 + 0.998000i \(0.520136\pi\)
\(662\) 52.5759 2.04342
\(663\) 0 0
\(664\) 0.974185 0.0378057
\(665\) 1.29180 0.0500939
\(666\) 0 0
\(667\) −9.87560 −0.382385
\(668\) 12.2623 0.474444
\(669\) 0 0
\(670\) −42.7753 −1.65256
\(671\) −11.3227 −0.437108
\(672\) 0 0
\(673\) 13.8944 0.535589 0.267794 0.963476i \(-0.413705\pi\)
0.267794 + 0.963476i \(0.413705\pi\)
\(674\) 30.3537 1.16918
\(675\) 0 0
\(676\) −2.71002 −0.104232
\(677\) −10.8567 −0.417256 −0.208628 0.977995i \(-0.566900\pi\)
−0.208628 + 0.977995i \(0.566900\pi\)
\(678\) 0 0
\(679\) 6.42872 0.246712
\(680\) −3.30032 −0.126562
\(681\) 0 0
\(682\) 61.9018 2.37034
\(683\) 33.6129 1.28616 0.643081 0.765798i \(-0.277656\pi\)
0.643081 + 0.765798i \(0.277656\pi\)
\(684\) 0 0
\(685\) 42.1604 1.61087
\(686\) −16.8205 −0.642209
\(687\) 0 0
\(688\) −6.73469 −0.256758
\(689\) 19.1558 0.729778
\(690\) 0 0
\(691\) −0.447664 −0.0170299 −0.00851497 0.999964i \(-0.502710\pi\)
−0.00851497 + 0.999964i \(0.502710\pi\)
\(692\) 18.6865 0.710353
\(693\) 0 0
\(694\) 51.3373 1.94874
\(695\) −44.3354 −1.68174
\(696\) 0 0
\(697\) −68.4815 −2.59392
\(698\) 59.0987 2.23692
\(699\) 0 0
\(700\) −3.38208 −0.127831
\(701\) −3.88664 −0.146796 −0.0733982 0.997303i \(-0.523384\pi\)
−0.0733982 + 0.997303i \(0.523384\pi\)
\(702\) 0 0
\(703\) −3.22458 −0.121617
\(704\) 32.2468 1.21535
\(705\) 0 0
\(706\) −57.9398 −2.18059
\(707\) −1.49674 −0.0562906
\(708\) 0 0
\(709\) −14.7400 −0.553572 −0.276786 0.960932i \(-0.589269\pi\)
−0.276786 + 0.960932i \(0.589269\pi\)
\(710\) −37.9344 −1.42365
\(711\) 0 0
\(712\) 0.724877 0.0271659
\(713\) 17.7949 0.666425
\(714\) 0 0
\(715\) 35.4517 1.32582
\(716\) 2.67833 0.100094
\(717\) 0 0
\(718\) 42.1168 1.57178
\(719\) 32.3508 1.20648 0.603240 0.797559i \(-0.293876\pi\)
0.603240 + 0.797559i \(0.293876\pi\)
\(720\) 0 0
\(721\) −10.4271 −0.388325
\(722\) 37.1915 1.38413
\(723\) 0 0
\(724\) 7.72299 0.287023
\(725\) −12.0956 −0.449218
\(726\) 0 0
\(727\) −9.23020 −0.342329 −0.171165 0.985242i \(-0.554753\pi\)
−0.171165 + 0.985242i \(0.554753\pi\)
\(728\) 0.329090 0.0121969
\(729\) 0 0
\(730\) 3.19990 0.118434
\(731\) −13.2898 −0.491540
\(732\) 0 0
\(733\) −52.9937 −1.95737 −0.978683 0.205379i \(-0.934157\pi\)
−0.978683 + 0.205379i \(0.934157\pi\)
\(734\) 69.8040 2.57651
\(735\) 0 0
\(736\) 17.5335 0.646292
\(737\) 28.6561 1.05556
\(738\) 0 0
\(739\) 2.84991 0.104836 0.0524178 0.998625i \(-0.483307\pi\)
0.0524178 + 0.998625i \(0.483307\pi\)
\(740\) 24.2957 0.893127
\(741\) 0 0
\(742\) 6.91424 0.253830
\(743\) −29.4126 −1.07904 −0.539522 0.841971i \(-0.681395\pi\)
−0.539522 + 0.841971i \(0.681395\pi\)
\(744\) 0 0
\(745\) −24.4714 −0.896563
\(746\) 18.9206 0.692732
\(747\) 0 0
\(748\) 58.9353 2.15489
\(749\) 0.491535 0.0179603
\(750\) 0 0
\(751\) −27.4298 −1.00093 −0.500463 0.865758i \(-0.666837\pi\)
−0.500463 + 0.865758i \(0.666837\pi\)
\(752\) −45.1494 −1.64643
\(753\) 0 0
\(754\) 31.3728 1.14253
\(755\) −2.73450 −0.0995187
\(756\) 0 0
\(757\) −28.4646 −1.03456 −0.517282 0.855815i \(-0.673056\pi\)
−0.517282 + 0.855815i \(0.673056\pi\)
\(758\) 3.89247 0.141381
\(759\) 0 0
\(760\) 0.332673 0.0120673
\(761\) 27.9722 1.01399 0.506996 0.861948i \(-0.330756\pi\)
0.506996 + 0.861948i \(0.330756\pi\)
\(762\) 0 0
\(763\) 2.58124 0.0934471
\(764\) 15.1484 0.548049
\(765\) 0 0
\(766\) −39.3621 −1.42221
\(767\) 5.17501 0.186859
\(768\) 0 0
\(769\) 46.9637 1.69355 0.846777 0.531947i \(-0.178540\pi\)
0.846777 + 0.531947i \(0.178540\pi\)
\(770\) 12.7962 0.461143
\(771\) 0 0
\(772\) −20.0048 −0.719988
\(773\) −44.2173 −1.59039 −0.795193 0.606356i \(-0.792631\pi\)
−0.795193 + 0.606356i \(0.792631\pi\)
\(774\) 0 0
\(775\) 21.7951 0.782904
\(776\) 1.65557 0.0594314
\(777\) 0 0
\(778\) 18.4571 0.661719
\(779\) 6.90295 0.247324
\(780\) 0 0
\(781\) 25.4131 0.909350
\(782\) 33.2487 1.18897
\(783\) 0 0
\(784\) 25.4320 0.908285
\(785\) −50.3762 −1.79800
\(786\) 0 0
\(787\) 36.4827 1.30047 0.650234 0.759734i \(-0.274671\pi\)
0.650234 + 0.759734i \(0.274671\pi\)
\(788\) −10.2582 −0.365434
\(789\) 0 0
\(790\) 51.5123 1.83273
\(791\) 7.54511 0.268273
\(792\) 0 0
\(793\) 10.3403 0.367194
\(794\) −67.3442 −2.38996
\(795\) 0 0
\(796\) 5.23087 0.185403
\(797\) −15.1172 −0.535480 −0.267740 0.963491i \(-0.586277\pi\)
−0.267740 + 0.963491i \(0.586277\pi\)
\(798\) 0 0
\(799\) −89.0948 −3.15195
\(800\) 21.4749 0.759252
\(801\) 0 0
\(802\) 7.16626 0.253049
\(803\) −2.14368 −0.0756488
\(804\) 0 0
\(805\) 3.67853 0.129651
\(806\) −56.5309 −1.99122
\(807\) 0 0
\(808\) −0.385450 −0.0135601
\(809\) −49.6978 −1.74728 −0.873641 0.486571i \(-0.838247\pi\)
−0.873641 + 0.486571i \(0.838247\pi\)
\(810\) 0 0
\(811\) −8.76133 −0.307652 −0.153826 0.988098i \(-0.549159\pi\)
−0.153826 + 0.988098i \(0.549159\pi\)
\(812\) 5.77020 0.202494
\(813\) 0 0
\(814\) −31.9417 −1.11956
\(815\) −47.4651 −1.66263
\(816\) 0 0
\(817\) 1.33961 0.0468671
\(818\) 64.6910 2.26187
\(819\) 0 0
\(820\) −52.0106 −1.81629
\(821\) −35.4641 −1.23771 −0.618853 0.785507i \(-0.712402\pi\)
−0.618853 + 0.785507i \(0.712402\pi\)
\(822\) 0 0
\(823\) −1.87915 −0.0655029 −0.0327514 0.999464i \(-0.510427\pi\)
−0.0327514 + 0.999464i \(0.510427\pi\)
\(824\) −2.68526 −0.0935454
\(825\) 0 0
\(826\) 1.86791 0.0649928
\(827\) 9.61685 0.334411 0.167205 0.985922i \(-0.446526\pi\)
0.167205 + 0.985922i \(0.446526\pi\)
\(828\) 0 0
\(829\) −7.59327 −0.263725 −0.131863 0.991268i \(-0.542096\pi\)
−0.131863 + 0.991268i \(0.542096\pi\)
\(830\) −34.5932 −1.20075
\(831\) 0 0
\(832\) −29.4489 −1.02096
\(833\) 50.1858 1.73883
\(834\) 0 0
\(835\) −16.3353 −0.565305
\(836\) −5.94069 −0.205463
\(837\) 0 0
\(838\) 29.9573 1.03486
\(839\) −39.6226 −1.36792 −0.683962 0.729517i \(-0.739745\pi\)
−0.683962 + 0.729517i \(0.739745\pi\)
\(840\) 0 0
\(841\) −8.36366 −0.288402
\(842\) 31.4616 1.08424
\(843\) 0 0
\(844\) 14.5203 0.499811
\(845\) 3.61015 0.124193
\(846\) 0 0
\(847\) −1.84839 −0.0635113
\(848\) −21.4977 −0.738233
\(849\) 0 0
\(850\) 40.7228 1.39678
\(851\) −9.18230 −0.314765
\(852\) 0 0
\(853\) 3.44370 0.117910 0.0589550 0.998261i \(-0.481223\pi\)
0.0589550 + 0.998261i \(0.481223\pi\)
\(854\) 3.73230 0.127717
\(855\) 0 0
\(856\) 0.126583 0.00432653
\(857\) −22.1464 −0.756508 −0.378254 0.925702i \(-0.623475\pi\)
−0.378254 + 0.925702i \(0.623475\pi\)
\(858\) 0 0
\(859\) 35.6226 1.21543 0.607714 0.794156i \(-0.292087\pi\)
0.607714 + 0.794156i \(0.292087\pi\)
\(860\) −10.0934 −0.344181
\(861\) 0 0
\(862\) −2.62002 −0.0892381
\(863\) −20.9746 −0.713984 −0.356992 0.934108i \(-0.616198\pi\)
−0.356992 + 0.934108i \(0.616198\pi\)
\(864\) 0 0
\(865\) −24.8932 −0.846393
\(866\) −35.4002 −1.20295
\(867\) 0 0
\(868\) −10.3974 −0.352910
\(869\) −34.5091 −1.17064
\(870\) 0 0
\(871\) −26.1697 −0.886727
\(872\) 0.664738 0.0225109
\(873\) 0 0
\(874\) −3.35148 −0.113365
\(875\) −3.95508 −0.133706
\(876\) 0 0
\(877\) 42.2135 1.42545 0.712724 0.701445i \(-0.247461\pi\)
0.712724 + 0.701445i \(0.247461\pi\)
\(878\) −43.8576 −1.48012
\(879\) 0 0
\(880\) −39.7858 −1.34118
\(881\) −38.2370 −1.28824 −0.644119 0.764925i \(-0.722776\pi\)
−0.644119 + 0.764925i \(0.722776\pi\)
\(882\) 0 0
\(883\) −28.8095 −0.969517 −0.484759 0.874648i \(-0.661093\pi\)
−0.484759 + 0.874648i \(0.661093\pi\)
\(884\) −53.8218 −1.81022
\(885\) 0 0
\(886\) −18.4646 −0.620332
\(887\) −13.7183 −0.460615 −0.230307 0.973118i \(-0.573973\pi\)
−0.230307 + 0.973118i \(0.573973\pi\)
\(888\) 0 0
\(889\) −6.09760 −0.204507
\(890\) −25.7403 −0.862816
\(891\) 0 0
\(892\) −37.3995 −1.25223
\(893\) 8.98077 0.300530
\(894\) 0 0
\(895\) −3.56794 −0.119263
\(896\) −0.769235 −0.0256983
\(897\) 0 0
\(898\) −25.0857 −0.837120
\(899\) −37.1848 −1.24018
\(900\) 0 0
\(901\) −42.4220 −1.41328
\(902\) 68.3787 2.27676
\(903\) 0 0
\(904\) 1.94307 0.0646255
\(905\) −10.2882 −0.341991
\(906\) 0 0
\(907\) 56.7371 1.88392 0.941962 0.335720i \(-0.108979\pi\)
0.941962 + 0.335720i \(0.108979\pi\)
\(908\) −1.27485 −0.0423073
\(909\) 0 0
\(910\) −11.6859 −0.387385
\(911\) −0.713715 −0.0236464 −0.0118232 0.999930i \(-0.503764\pi\)
−0.0118232 + 0.999930i \(0.503764\pi\)
\(912\) 0 0
\(913\) 23.1747 0.766970
\(914\) 37.7524 1.24874
\(915\) 0 0
\(916\) −10.3799 −0.342960
\(917\) −3.35784 −0.110886
\(918\) 0 0
\(919\) −57.3212 −1.89085 −0.945425 0.325839i \(-0.894353\pi\)
−0.945425 + 0.325839i \(0.894353\pi\)
\(920\) 0.947320 0.0312322
\(921\) 0 0
\(922\) −82.9606 −2.73216
\(923\) −23.2081 −0.763903
\(924\) 0 0
\(925\) −11.2464 −0.369780
\(926\) 8.33972 0.274060
\(927\) 0 0
\(928\) −36.6385 −1.20272
\(929\) 14.9631 0.490924 0.245462 0.969406i \(-0.421060\pi\)
0.245462 + 0.969406i \(0.421060\pi\)
\(930\) 0 0
\(931\) −5.05873 −0.165793
\(932\) 27.3406 0.895573
\(933\) 0 0
\(934\) 51.0432 1.67018
\(935\) −78.5106 −2.56757
\(936\) 0 0
\(937\) −24.6696 −0.805922 −0.402961 0.915217i \(-0.632019\pi\)
−0.402961 + 0.915217i \(0.632019\pi\)
\(938\) −9.44589 −0.308419
\(939\) 0 0
\(940\) −67.6660 −2.20702
\(941\) −23.2604 −0.758267 −0.379134 0.925342i \(-0.623778\pi\)
−0.379134 + 0.925342i \(0.623778\pi\)
\(942\) 0 0
\(943\) 19.6568 0.640115
\(944\) −5.80768 −0.189024
\(945\) 0 0
\(946\) 13.2698 0.431439
\(947\) −19.1774 −0.623182 −0.311591 0.950216i \(-0.600862\pi\)
−0.311591 + 0.950216i \(0.600862\pi\)
\(948\) 0 0
\(949\) 1.95768 0.0635490
\(950\) −4.10487 −0.133180
\(951\) 0 0
\(952\) −0.728796 −0.0236204
\(953\) 30.9817 1.00359 0.501797 0.864985i \(-0.332672\pi\)
0.501797 + 0.864985i \(0.332672\pi\)
\(954\) 0 0
\(955\) −20.1799 −0.653005
\(956\) −18.9056 −0.611451
\(957\) 0 0
\(958\) 42.0076 1.35720
\(959\) 9.31010 0.300639
\(960\) 0 0
\(961\) 36.0037 1.16141
\(962\) 29.1703 0.940488
\(963\) 0 0
\(964\) −29.6111 −0.953709
\(965\) 26.6494 0.857873
\(966\) 0 0
\(967\) 19.8577 0.638582 0.319291 0.947657i \(-0.396555\pi\)
0.319291 + 0.947657i \(0.396555\pi\)
\(968\) −0.476009 −0.0152995
\(969\) 0 0
\(970\) −58.7890 −1.88760
\(971\) −3.39436 −0.108930 −0.0544651 0.998516i \(-0.517345\pi\)
−0.0544651 + 0.998516i \(0.517345\pi\)
\(972\) 0 0
\(973\) −9.79039 −0.313865
\(974\) 13.3292 0.427096
\(975\) 0 0
\(976\) −11.6044 −0.371449
\(977\) −53.5676 −1.71378 −0.856889 0.515501i \(-0.827606\pi\)
−0.856889 + 0.515501i \(0.827606\pi\)
\(978\) 0 0
\(979\) 17.2439 0.551119
\(980\) 38.1152 1.21755
\(981\) 0 0
\(982\) 73.7994 2.35503
\(983\) 27.8229 0.887412 0.443706 0.896173i \(-0.353664\pi\)
0.443706 + 0.896173i \(0.353664\pi\)
\(984\) 0 0
\(985\) 13.6655 0.435419
\(986\) −69.4775 −2.21261
\(987\) 0 0
\(988\) 5.42525 0.172600
\(989\) 3.81468 0.121300
\(990\) 0 0
\(991\) 14.5949 0.463622 0.231811 0.972761i \(-0.425535\pi\)
0.231811 + 0.972761i \(0.425535\pi\)
\(992\) 66.0192 2.09611
\(993\) 0 0
\(994\) −8.37690 −0.265699
\(995\) −6.96829 −0.220910
\(996\) 0 0
\(997\) −2.43698 −0.0771799 −0.0385900 0.999255i \(-0.512287\pi\)
−0.0385900 + 0.999255i \(0.512287\pi\)
\(998\) −73.4937 −2.32640
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6561.2.a.c.1.14 72
3.2 odd 2 6561.2.a.d.1.59 72
81.4 even 27 81.2.g.a.16.2 144
81.7 even 27 729.2.g.c.352.7 144
81.20 odd 54 243.2.g.a.118.7 144
81.23 odd 54 729.2.g.b.379.2 144
81.31 even 27 729.2.g.d.622.7 144
81.34 even 27 729.2.g.d.109.7 144
81.47 odd 54 729.2.g.a.109.2 144
81.50 odd 54 729.2.g.a.622.2 144
81.58 even 27 729.2.g.c.379.7 144
81.61 even 27 81.2.g.a.76.2 yes 144
81.74 odd 54 729.2.g.b.352.2 144
81.77 odd 54 243.2.g.a.208.7 144
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
81.2.g.a.16.2 144 81.4 even 27
81.2.g.a.76.2 yes 144 81.61 even 27
243.2.g.a.118.7 144 81.20 odd 54
243.2.g.a.208.7 144 81.77 odd 54
729.2.g.a.109.2 144 81.47 odd 54
729.2.g.a.622.2 144 81.50 odd 54
729.2.g.b.352.2 144 81.74 odd 54
729.2.g.b.379.2 144 81.23 odd 54
729.2.g.c.352.7 144 81.7 even 27
729.2.g.c.379.7 144 81.58 even 27
729.2.g.d.109.7 144 81.34 even 27
729.2.g.d.622.7 144 81.31 even 27
6561.2.a.c.1.14 72 1.1 even 1 trivial
6561.2.a.d.1.59 72 3.2 odd 2