L(s) = 1 | + (−0.675 − 1.17i)3-s + (1 − 1.73i)4-s + (0.5 + 0.866i)5-s + 7-s + (0.586 − 1.01i)9-s + 5.17·11-s − 2.70·12-s + (−1 + 1.73i)13-s + (0.675 − 1.17i)15-s + (−1.99 − 3.46i)16-s + (−0.351 − 0.609i)17-s + (1.91 + 3.91i)19-s + 1.99·20-s + (−0.675 − 1.17i)21-s + (2.76 − 4.78i)23-s + ⋯ |
L(s) = 1 | + (−0.390 − 0.675i)3-s + (0.5 − 0.866i)4-s + (0.223 + 0.387i)5-s + 0.377·7-s + (0.195 − 0.338i)9-s + 1.55·11-s − 0.780·12-s + (−0.277 + 0.480i)13-s + (0.174 − 0.302i)15-s + (−0.499 − 0.866i)16-s + (−0.0853 − 0.147i)17-s + (0.438 + 0.898i)19-s + 0.447·20-s + (−0.147 − 0.255i)21-s + (0.575 − 0.997i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 665 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.238 + 0.971i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 665 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.238 + 0.971i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.35581 - 1.06319i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.35581 - 1.06319i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 + (-0.5 - 0.866i)T \) |
| 7 | \( 1 - T \) |
| 19 | \( 1 + (-1.91 - 3.91i)T \) |
good | 2 | \( 1 + (-1 + 1.73i)T^{2} \) |
| 3 | \( 1 + (0.675 + 1.17i)T + (-1.5 + 2.59i)T^{2} \) |
| 11 | \( 1 - 5.17T + 11T^{2} \) |
| 13 | \( 1 + (1 - 1.73i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + (0.351 + 0.609i)T + (-8.5 + 14.7i)T^{2} \) |
| 23 | \( 1 + (-2.76 + 4.78i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (1.85 - 3.20i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 - 3.82T + 31T^{2} \) |
| 37 | \( 1 + 2.82T + 37T^{2} \) |
| 41 | \( 1 + (4.08 + 7.07i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (4 + 6.92i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (3.49 - 6.05i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-2.41 + 4.17i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (2.82 + 4.89i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-2.52 + 4.37i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (5.82 - 10.0i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (-0.413 - 0.716i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + (-5.84 - 10.1i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-1.93 - 3.35i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + 83T^{2} \) |
| 89 | \( 1 + (-4.26 + 7.38i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-4.87 - 8.44i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.35737301052584921855618713844, −9.598524599242189191034964555744, −8.729091166602708194184200045242, −7.25132223526524975865937485074, −6.72833433249717229857829809153, −6.12217054302690278921154839684, −5.04132452468578451201922401357, −3.70281177899608783973360560580, −2.02994869980025784886523812867, −1.12174822512070078898066327636,
1.64414928021479718420897213953, 3.18964867804754293255362322908, 4.26807698214335605336871959369, 5.05335202002362261970458141249, 6.25889617449958587570387990645, 7.21682324352628313418196066245, 8.084858272923133752884982285331, 9.071634547941162552709949619402, 9.782489682407259864431691330564, 10.85916950659726165772674206196