L(s) = 1 | + (−0.675 − 1.17i)3-s + (1 − 1.73i)4-s + (0.5 + 0.866i)5-s + 7-s + (0.586 − 1.01i)9-s + 5.17·11-s − 2.70·12-s + (−1 + 1.73i)13-s + (0.675 − 1.17i)15-s + (−1.99 − 3.46i)16-s + (−0.351 − 0.609i)17-s + (1.91 + 3.91i)19-s + 1.99·20-s + (−0.675 − 1.17i)21-s + (2.76 − 4.78i)23-s + ⋯ |
L(s) = 1 | + (−0.390 − 0.675i)3-s + (0.5 − 0.866i)4-s + (0.223 + 0.387i)5-s + 0.377·7-s + (0.195 − 0.338i)9-s + 1.55·11-s − 0.780·12-s + (−0.277 + 0.480i)13-s + (0.174 − 0.302i)15-s + (−0.499 − 0.866i)16-s + (−0.0853 − 0.147i)17-s + (0.438 + 0.898i)19-s + 0.447·20-s + (−0.147 − 0.255i)21-s + (0.575 − 0.997i)23-s + ⋯ |
Λ(s)=(=(665s/2ΓC(s)L(s)(0.238+0.971i)Λ(2−s)
Λ(s)=(=(665s/2ΓC(s+1/2)L(s)(0.238+0.971i)Λ(1−s)
Degree: |
2 |
Conductor: |
665
= 5⋅7⋅19
|
Sign: |
0.238+0.971i
|
Analytic conductor: |
5.31005 |
Root analytic conductor: |
2.30435 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ665(596,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 665, ( :1/2), 0.238+0.971i)
|
Particular Values
L(1) |
≈ |
1.35581−1.06319i |
L(21) |
≈ |
1.35581−1.06319i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1+(−0.5−0.866i)T |
| 7 | 1−T |
| 19 | 1+(−1.91−3.91i)T |
good | 2 | 1+(−1+1.73i)T2 |
| 3 | 1+(0.675+1.17i)T+(−1.5+2.59i)T2 |
| 11 | 1−5.17T+11T2 |
| 13 | 1+(1−1.73i)T+(−6.5−11.2i)T2 |
| 17 | 1+(0.351+0.609i)T+(−8.5+14.7i)T2 |
| 23 | 1+(−2.76+4.78i)T+(−11.5−19.9i)T2 |
| 29 | 1+(1.85−3.20i)T+(−14.5−25.1i)T2 |
| 31 | 1−3.82T+31T2 |
| 37 | 1+2.82T+37T2 |
| 41 | 1+(4.08+7.07i)T+(−20.5+35.5i)T2 |
| 43 | 1+(4+6.92i)T+(−21.5+37.2i)T2 |
| 47 | 1+(3.49−6.05i)T+(−23.5−40.7i)T2 |
| 53 | 1+(−2.41+4.17i)T+(−26.5−45.8i)T2 |
| 59 | 1+(2.82+4.89i)T+(−29.5+51.0i)T2 |
| 61 | 1+(−2.52+4.37i)T+(−30.5−52.8i)T2 |
| 67 | 1+(5.82−10.0i)T+(−33.5−58.0i)T2 |
| 71 | 1+(−0.413−0.716i)T+(−35.5+61.4i)T2 |
| 73 | 1+(−5.84−10.1i)T+(−36.5+63.2i)T2 |
| 79 | 1+(−1.93−3.35i)T+(−39.5+68.4i)T2 |
| 83 | 1+83T2 |
| 89 | 1+(−4.26+7.38i)T+(−44.5−77.0i)T2 |
| 97 | 1+(−4.87−8.44i)T+(−48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.35737301052584921855618713844, −9.598524599242189191034964555744, −8.729091166602708194184200045242, −7.25132223526524975865937485074, −6.72833433249717229857829809153, −6.12217054302690278921154839684, −5.04132452468578451201922401357, −3.70281177899608783973360560580, −2.02994869980025784886523812867, −1.12174822512070078898066327636,
1.64414928021479718420897213953, 3.18964867804754293255362322908, 4.26807698214335605336871959369, 5.05335202002362261970458141249, 6.25889617449958587570387990645, 7.21682324352628313418196066245, 8.084858272923133752884982285331, 9.071634547941162552709949619402, 9.782489682407259864431691330564, 10.85916950659726165772674206196