Properties

Label 665.2.i.d
Level $665$
Weight $2$
Character orbit 665.i
Analytic conductor $5.310$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [665,2,Mod(106,665)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(665, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("665.106");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 665 = 5 \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 665.i (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.31005173442\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.954288.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} - 2x^{4} + 3x^{3} - 6x^{2} - 9x + 27 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2}\cdot 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_{3} + \beta_{2} - 1) q^{3} + 2 \beta_{2} q^{4} + ( - \beta_{2} + 1) q^{5} + q^{7} + ( - \beta_{5} + \beta_{4} - 4 \beta_{2}) q^{9} + \beta_{4} q^{11} + ( - 2 \beta_{3} - 2 \beta_1 - 2) q^{12}+ \cdots + (2 \beta_{5} - 2 \beta_{4} + \cdots + 4 \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 2 q^{3} + 6 q^{4} + 3 q^{5} + 6 q^{7} - 11 q^{9} + 2 q^{11} - 8 q^{12} - 6 q^{13} + 2 q^{15} - 12 q^{16} + 2 q^{17} - q^{19} + 12 q^{20} - 2 q^{21} - 3 q^{25} + 16 q^{27} + 6 q^{28} - 7 q^{29} - 2 q^{31}+ \cdots + 39 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - x^{5} - 2x^{4} + 3x^{3} - 6x^{2} - 9x + 27 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{5} - 4\nu^{4} + \nu^{3} - 9\nu^{2} + 21\nu + 9 ) / 27 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -2\nu^{5} - \nu^{4} - 2\nu^{3} + 12\nu + 36 ) / 27 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -2\nu^{5} + 8\nu^{4} - 2\nu^{3} - 9\nu^{2} + 12\nu - 18 ) / 27 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -4\nu^{5} - 2\nu^{4} + 14\nu^{3} + 18\nu^{2} + 24\nu + 45 ) / 27 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 10\nu^{5} + 5\nu^{4} - 8\nu^{3} + 36\nu^{2} - 6\nu - 153 ) / 27 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{5} + \beta_{4} + 2\beta_{3} + 3\beta_{2} + 4\beta_1 ) / 6 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{5} + \beta_{4} - \beta_{3} + 3\beta_{2} - 2\beta_1 ) / 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( -2\beta_{5} + 7\beta_{4} + 2\beta_{3} - 24\beta_{2} + 4\beta _1 + 9 ) / 6 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( \beta_{5} + \beta_{4} + 8\beta_{3} - 6\beta_{2} - 2\beta _1 + 18 ) / 3 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( 7\beta_{5} - 2\beta_{4} + 2\beta_{3} - 33\beta_{2} + 22\beta _1 + 81 ) / 6 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/665\mathbb{Z}\right)^\times\).

\(n\) \(211\) \(267\) \(381\)
\(\chi(n)\) \(-\beta_{2}\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
106.1
0.403374 + 1.68443i
1.71903 0.211943i
−1.62241 0.606458i
0.403374 1.68443i
1.71903 + 0.211943i
−1.62241 + 0.606458i
0 −1.66044 + 2.87597i 1.00000 + 1.73205i 0.500000 0.866025i 0 1.00000 0 −4.01414 6.95269i 0
106.2 0 −0.675970 + 1.17081i 1.00000 + 1.73205i 0.500000 0.866025i 0 1.00000 0 0.586130 + 1.01521i 0
106.3 0 1.33641 2.31473i 1.00000 + 1.73205i 0.500000 0.866025i 0 1.00000 0 −2.07199 3.58880i 0
596.1 0 −1.66044 2.87597i 1.00000 1.73205i 0.500000 + 0.866025i 0 1.00000 0 −4.01414 + 6.95269i 0
596.2 0 −0.675970 1.17081i 1.00000 1.73205i 0.500000 + 0.866025i 0 1.00000 0 0.586130 1.01521i 0
596.3 0 1.33641 + 2.31473i 1.00000 1.73205i 0.500000 + 0.866025i 0 1.00000 0 −2.07199 + 3.58880i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 106.3
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
19.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 665.2.i.d 6
19.c even 3 1 inner 665.2.i.d 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
665.2.i.d 6 1.a even 1 1 trivial
665.2.i.d 6 19.c even 3 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(665, [\chi])\):

\( T_{2} \) Copy content Toggle raw display
\( T_{3}^{6} + 2T_{3}^{5} + 12T_{3}^{4} + 8T_{3}^{3} + 88T_{3}^{2} + 96T_{3} + 144 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} \) Copy content Toggle raw display
$3$ \( T^{6} + 2 T^{5} + \cdots + 144 \) Copy content Toggle raw display
$5$ \( (T^{2} - T + 1)^{3} \) Copy content Toggle raw display
$7$ \( (T - 1)^{6} \) Copy content Toggle raw display
$11$ \( (T^{3} - T^{2} - 21 T - 3)^{2} \) Copy content Toggle raw display
$13$ \( (T^{2} + 2 T + 4)^{3} \) Copy content Toggle raw display
$17$ \( T^{6} - 2 T^{5} + \cdots + 576 \) Copy content Toggle raw display
$19$ \( T^{6} + T^{5} + \cdots + 6859 \) Copy content Toggle raw display
$23$ \( T^{6} + 24 T^{4} + \cdots + 1296 \) Copy content Toggle raw display
$29$ \( T^{6} + 7 T^{5} + \cdots + 15129 \) Copy content Toggle raw display
$31$ \( (T^{3} + T^{2} - 37 T + 71)^{2} \) Copy content Toggle raw display
$37$ \( (T^{3} - 4 T^{2} - 32 T - 36)^{2} \) Copy content Toggle raw display
$41$ \( T^{6} + 10 T^{5} + \cdots + 576 \) Copy content Toggle raw display
$43$ \( (T^{2} + 8 T + 64)^{3} \) Copy content Toggle raw display
$47$ \( T^{6} - 6 T^{5} + \cdots + 1296 \) Copy content Toggle raw display
$53$ \( T^{6} - 2 T^{5} + \cdots + 11664 \) Copy content Toggle raw display
$59$ \( T^{6} + 19 T^{5} + \cdots + 40401 \) Copy content Toggle raw display
$61$ \( T^{6} - 9 T^{5} + \cdots + 151321 \) Copy content Toggle raw display
$67$ \( T^{6} + 10 T^{5} + \cdots + 1272384 \) Copy content Toggle raw display
$71$ \( T^{6} - 17 T^{5} + \cdots + 2601 \) Copy content Toggle raw display
$73$ \( T^{6} - 4 T^{5} + \cdots + 26896 \) Copy content Toggle raw display
$79$ \( T^{6} + 7 T^{5} + \cdots + 2601 \) Copy content Toggle raw display
$83$ \( T^{6} \) Copy content Toggle raw display
$89$ \( T^{6} - 9 T^{5} + \cdots + 81 \) Copy content Toggle raw display
$97$ \( T^{6} + 8 T^{5} + \cdots + 16384 \) Copy content Toggle raw display
show more
show less