L(s) = 1 | + (0.745 − 1.29i)2-s + (1.62 − 2.82i)3-s + (−0.112 − 0.194i)4-s + (0.5 − 0.866i)5-s + (−2.42 − 4.20i)6-s − 7-s + 2.64·8-s + (−3.80 − 6.59i)9-s + (−0.745 − 1.29i)10-s − 4.16·11-s − 0.730·12-s + (2.44 + 4.24i)13-s + (−0.745 + 1.29i)14-s + (−1.62 − 2.82i)15-s + (2.19 − 3.80i)16-s + (−1.32 + 2.29i)17-s + ⋯ |
L(s) = 1 | + (0.527 − 0.913i)2-s + (0.940 − 1.62i)3-s + (−0.0560 − 0.0970i)4-s + (0.223 − 0.387i)5-s + (−0.991 − 1.71i)6-s − 0.377·7-s + 0.936·8-s + (−1.26 − 2.19i)9-s + (−0.235 − 0.408i)10-s − 1.25·11-s − 0.210·12-s + (0.679 + 1.17i)13-s + (−0.199 + 0.345i)14-s + (−0.420 − 0.728i)15-s + (0.549 − 0.952i)16-s + (−0.321 + 0.556i)17-s + ⋯ |
Λ(s)=(=(665s/2ΓC(s)L(s)(−0.915+0.403i)Λ(2−s)
Λ(s)=(=(665s/2ΓC(s+1/2)L(s)(−0.915+0.403i)Λ(1−s)
Degree: |
2 |
Conductor: |
665
= 5⋅7⋅19
|
Sign: |
−0.915+0.403i
|
Analytic conductor: |
5.31005 |
Root analytic conductor: |
2.30435 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ665(106,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 665, ( :1/2), −0.915+0.403i)
|
Particular Values
L(1) |
≈ |
0.566245−2.68881i |
L(21) |
≈ |
0.566245−2.68881i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1+(−0.5+0.866i)T |
| 7 | 1+T |
| 19 | 1+(−4.27+0.875i)T |
good | 2 | 1+(−0.745+1.29i)T+(−1−1.73i)T2 |
| 3 | 1+(−1.62+2.82i)T+(−1.5−2.59i)T2 |
| 11 | 1+4.16T+11T2 |
| 13 | 1+(−2.44−4.24i)T+(−6.5+11.2i)T2 |
| 17 | 1+(1.32−2.29i)T+(−8.5−14.7i)T2 |
| 23 | 1+(1.11+1.92i)T+(−11.5+19.9i)T2 |
| 29 | 1+(−2.65−4.59i)T+(−14.5+25.1i)T2 |
| 31 | 1+0.565T+31T2 |
| 37 | 1−5.73T+37T2 |
| 41 | 1+(−1.06+1.84i)T+(−20.5−35.5i)T2 |
| 43 | 1+(−3.07+5.32i)T+(−21.5−37.2i)T2 |
| 47 | 1+(2.75+4.77i)T+(−23.5+40.7i)T2 |
| 53 | 1+(−5.04−8.74i)T+(−26.5+45.8i)T2 |
| 59 | 1+(3.35−5.80i)T+(−29.5−51.0i)T2 |
| 61 | 1+(4.14+7.18i)T+(−30.5+52.8i)T2 |
| 67 | 1+(−4.92−8.53i)T+(−33.5+58.0i)T2 |
| 71 | 1+(7.43−12.8i)T+(−35.5−61.4i)T2 |
| 73 | 1+(3.17−5.49i)T+(−36.5−63.2i)T2 |
| 79 | 1+(−3.09+5.36i)T+(−39.5−68.4i)T2 |
| 83 | 1+13.7T+83T2 |
| 89 | 1+(−4.99−8.65i)T+(−44.5+77.0i)T2 |
| 97 | 1+(−9.47+16.4i)T+(−48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.27836588336695200106611273087, −9.093318267255837581347657299942, −8.386811289806540105272123518222, −7.49931598268468800907520251144, −6.80095943414990803579585450576, −5.66753545292714829555951230135, −4.15567563110485461862514983084, −3.01967251429711354642267533906, −2.26783404473652878376029297595, −1.24754237334955688559499521969,
2.62986342130104868089953086044, 3.43675200694931319290719701908, 4.61757711540811727933213765344, 5.37074268846602692314519149579, 6.11501099306184418282726091543, 7.70686175548981804967795273275, 8.001173460853755351638394221863, 9.302041911217551512565245623105, 10.05892937034877592975743152435, 10.54893829780075620300505068725