Properties

Label 665.2.i.h
Level 665665
Weight 22
Character orbit 665.i
Analytic conductor 5.3105.310
Analytic rank 00
Dimension 2020
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [665,2,Mod(106,665)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(665, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("665.106");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 665=5719 665 = 5 \cdot 7 \cdot 19
Weight: k k == 2 2
Character orbit: [χ][\chi] == 665.i (of order 33, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 5.310051734425.31005173442
Analytic rank: 00
Dimension: 2020
Relative dimension: 1010 over Q(ζ3)\Q(\zeta_{3})
Coefficient field: Q[x]/(x20)\mathbb{Q}[x]/(x^{20} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x203x19+20x1843x17+207x16401x15+1351x142135x13++1024 x^{20} - 3 x^{19} + 20 x^{18} - 43 x^{17} + 207 x^{16} - 401 x^{15} + 1351 x^{14} - 2135 x^{13} + \cdots + 1024 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 22 2^{2}
Twist minimal: yes
Sato-Tate group: SU(2)[C3]\mathrm{SU}(2)[C_{3}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β191,\beta_1,\ldots,\beta_{19} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β1q2β2q3+(β12β8+β6)q4+(β8+1)q5+(β16β15+β1)q6q7+(β19β16β14++1)q8++(3β19+3β18+3β1)q99+O(q100) q + \beta_1 q^{2} - \beta_{2} q^{3} + ( - \beta_{12} - \beta_{8} + \beta_{6}) q^{4} + ( - \beta_{8} + 1) q^{5} + ( - \beta_{16} - \beta_{15} + \cdots - \beta_1) q^{6} - q^{7} + ( - \beta_{19} - \beta_{16} - \beta_{14} + \cdots + 1) q^{8}+ \cdots + ( - 3 \beta_{19} + 3 \beta_{18} + \cdots - 3 \beta_1) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 20q+3q2q311q4+10q56q620q79q93q10+2q114q12+6q133q14+q155q16+8q1776q18+17q1922q20+q21++34q99+O(q100) 20 q + 3 q^{2} - q^{3} - 11 q^{4} + 10 q^{5} - 6 q^{6} - 20 q^{7} - 9 q^{9} - 3 q^{10} + 2 q^{11} - 4 q^{12} + 6 q^{13} - 3 q^{14} + q^{15} - 5 q^{16} + 8 q^{17} - 76 q^{18} + 17 q^{19} - 22 q^{20} + q^{21}+ \cdots + 34 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x203x19+20x1843x17+207x16401x15+1351x142135x13++1024 x^{20} - 3 x^{19} + 20 x^{18} - 43 x^{17} + 207 x^{16} - 401 x^{15} + 1351 x^{14} - 2135 x^{13} + \cdots + 1024 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== (19 ⁣ ⁣91ν19+10 ⁣ ⁣68)/37 ⁣ ⁣68 ( - 19\!\cdots\!91 \nu^{19} + \cdots - 10\!\cdots\!68 ) / 37\!\cdots\!68 Copy content Toggle raw display
β3\beta_{3}== (33 ⁣ ⁣89ν19++23 ⁣ ⁣16)/47 ⁣ ⁣96 ( - 33\!\cdots\!89 \nu^{19} + \cdots + 23\!\cdots\!16 ) / 47\!\cdots\!96 Copy content Toggle raw display
β4\beta_{4}== (70 ⁣ ⁣61ν19+28 ⁣ ⁣64)/75 ⁣ ⁣36 ( - 70\!\cdots\!61 \nu^{19} + \cdots - 28\!\cdots\!64 ) / 75\!\cdots\!36 Copy content Toggle raw display
β5\beta_{5}== (20 ⁣ ⁣11ν19+41 ⁣ ⁣76)/18 ⁣ ⁣84 ( - 20\!\cdots\!11 \nu^{19} + \cdots - 41\!\cdots\!76 ) / 18\!\cdots\!84 Copy content Toggle raw display
β6\beta_{6}== (25 ⁣ ⁣87ν19++61 ⁣ ⁣04)/21 ⁣ ⁣68 ( - 25\!\cdots\!87 \nu^{19} + \cdots + 61\!\cdots\!04 ) / 21\!\cdots\!68 Copy content Toggle raw display
β7\beta_{7}== (32 ⁣ ⁣00ν19+10 ⁣ ⁣40)/21 ⁣ ⁣68 ( 32\!\cdots\!00 \nu^{19} + \cdots - 10\!\cdots\!40 ) / 21\!\cdots\!68 Copy content Toggle raw display
β8\beta_{8}== (32 ⁣ ⁣45ν19++40 ⁣ ⁣76)/69 ⁣ ⁣76 ( - 32\!\cdots\!45 \nu^{19} + \cdots + 40\!\cdots\!76 ) / 69\!\cdots\!76 Copy content Toggle raw display
β9\beta_{9}== (23 ⁣ ⁣81ν19++15 ⁣ ⁣04)/37 ⁣ ⁣68 ( 23\!\cdots\!81 \nu^{19} + \cdots + 15\!\cdots\!04 ) / 37\!\cdots\!68 Copy content Toggle raw display
β10\beta_{10}== (71 ⁣ ⁣03ν19++29 ⁣ ⁣64)/75 ⁣ ⁣36 ( 71\!\cdots\!03 \nu^{19} + \cdots + 29\!\cdots\!64 ) / 75\!\cdots\!36 Copy content Toggle raw display
β11\beta_{11}== (20 ⁣ ⁣79ν19+25 ⁣ ⁣56)/18 ⁣ ⁣84 ( - 20\!\cdots\!79 \nu^{19} + \cdots - 25\!\cdots\!56 ) / 18\!\cdots\!84 Copy content Toggle raw display
β12\beta_{12}== (88 ⁣ ⁣51ν19++18 ⁣ ⁣00)/69 ⁣ ⁣76 ( 88\!\cdots\!51 \nu^{19} + \cdots + 18\!\cdots\!00 ) / 69\!\cdots\!76 Copy content Toggle raw display
β13\beta_{13}== (97 ⁣ ⁣23ν19++40 ⁣ ⁣84)/75 ⁣ ⁣36 ( 97\!\cdots\!23 \nu^{19} + \cdots + 40\!\cdots\!84 ) / 75\!\cdots\!36 Copy content Toggle raw display
β14\beta_{14}== (27 ⁣ ⁣12ν19++59 ⁣ ⁣36)/11 ⁣ ⁣24 ( - 27\!\cdots\!12 \nu^{19} + \cdots + 59\!\cdots\!36 ) / 11\!\cdots\!24 Copy content Toggle raw display
β15\beta_{15}== (21 ⁣ ⁣55ν19++27 ⁣ ⁣76)/94 ⁣ ⁣92 ( - 21\!\cdots\!55 \nu^{19} + \cdots + 27\!\cdots\!76 ) / 94\!\cdots\!92 Copy content Toggle raw display
β16\beta_{16}== (22 ⁣ ⁣43ν19++38 ⁣ ⁣96)/94 ⁣ ⁣92 ( - 22\!\cdots\!43 \nu^{19} + \cdots + 38\!\cdots\!96 ) / 94\!\cdots\!92 Copy content Toggle raw display
β17\beta_{17}== (19 ⁣ ⁣87ν19++63 ⁣ ⁣68)/75 ⁣ ⁣36 ( 19\!\cdots\!87 \nu^{19} + \cdots + 63\!\cdots\!68 ) / 75\!\cdots\!36 Copy content Toggle raw display
β18\beta_{18}== (10 ⁣ ⁣19ν19++20 ⁣ ⁣28)/37 ⁣ ⁣68 ( 10\!\cdots\!19 \nu^{19} + \cdots + 20\!\cdots\!28 ) / 37\!\cdots\!68 Copy content Toggle raw display
β19\beta_{19}== (40 ⁣ ⁣27ν19+64 ⁣ ⁣56)/94 ⁣ ⁣92 ( 40\!\cdots\!27 \nu^{19} + \cdots - 64\!\cdots\!56 ) / 94\!\cdots\!92 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β123β8+β6 -\beta_{12} - 3\beta_{8} + \beta_{6} Copy content Toggle raw display
ν3\nu^{3}== β19β16β14+β11+5β7+β6β5+1 -\beta_{19} - \beta_{16} - \beta_{14} + \beta_{11} + 5\beta_{7} + \beta_{6} - \beta_{5} + 1 Copy content Toggle raw display
ν4\nu^{4}== β18+7β12+β10β9+14β814 -\beta_{18} + 7\beta_{12} + \beta_{10} - \beta_{9} + 14\beta_{8} - 14 Copy content Toggle raw display
ν5\nu^{5}== 8β19+2β17+9β16+β15+9β149β13+8β12+29β1 8 \beta_{19} + 2 \beta_{17} + 9 \beta_{16} + \beta_{15} + 9 \beta_{14} - 9 \beta_{13} + 8 \beta_{12} + \cdots - 29 \beta_1 Copy content Toggle raw display
ν6\nu^{6}== β19+11β17+13β16+β152β14β1111β10++78 \beta_{19} + 11 \beta_{17} + 13 \beta_{16} + \beta_{15} - 2 \beta_{14} - \beta_{11} - 11 \beta_{10} + \cdots + 78 Copy content Toggle raw display
ν7\nu^{7}== β18+66β1359β1224β10+69β9+40β8+79β5+40 \beta_{18} + 66 \beta_{13} - 59 \beta_{12} - 24 \beta_{10} + 69 \beta_{9} + 40 \beta_{8} + 79 \beta_{5} + \cdots - 40 Copy content Toggle raw display
ν8\nu^{8}== 17β19+79β1893β17123β1619β15+25β14++4β1 - 17 \beta_{19} + 79 \beta_{18} - 93 \beta_{17} - 123 \beta_{16} - 19 \beta_{15} + 25 \beta_{14} + \cdots + 4 \beta_1 Copy content Toggle raw display
ν9\nu^{9}== 424β19216β17511β16167β15453β14+582β11++208 - 424 \beta_{19} - 216 \beta_{17} - 511 \beta_{16} - 167 \beta_{15} - 453 \beta_{14} + 582 \beta_{11} + \cdots + 208 Copy content Toggle raw display
ν10\nu^{10}== 582β18+210β13+2072β12+727β101032β9+2999β8+2999 - 582 \beta_{18} + 210 \beta_{13} + 2072 \beta_{12} + 727 \beta_{10} - 1032 \beta_{9} + 2999 \beta_{8} + \cdots - 2999 Copy content Toggle raw display
ν11\nu^{11}== 3009β19234β18+1759β17+3751β16+1467β15+7304β1 3009 \beta_{19} - 234 \beta_{18} + 1759 \beta_{17} + 3751 \beta_{16} + 1467 \beta_{15} + \cdots - 7304 \beta_1 Copy content Toggle raw display
ν12\nu^{12}== 1918β19+5510β17+8175β16+2187β151474β142386β11++19511 1918 \beta_{19} + 5510 \beta_{17} + 8175 \beta_{16} + 2187 \beta_{15} - 1474 \beta_{14} - 2386 \beta_{11} + \cdots + 19511 Copy content Toggle raw display
ν13\nu^{13}== 2386β18+20102β1323591β1213685β10+27452β9+3537β8+3537 2386 \beta_{18} + 20102 \beta_{13} - 23591 \beta_{12} - 13685 \beta_{10} + 27452 \beta_{9} + 3537 \beta_{8} + \cdots - 3537 Copy content Toggle raw display
ν14\nu^{14}== 17174β19+29575β1841137β1762797β1619186β15++12966β1 - 17174 \beta_{19} + 29575 \beta_{18} - 41137 \beta_{17} - 62797 \beta_{16} - 19186 \beta_{15} + \cdots + 12966 \beta_1 Copy content Toggle raw display
ν15\nu^{15}== 149460β19103934β17200572β1691194β15133178β14++3367 - 149460 \beta_{19} - 103934 \beta_{17} - 200572 \beta_{16} - 91194 \beta_{15} - 133178 \beta_{14} + \cdots + 3367 Copy content Toggle raw display
ν16\nu^{16}== 208610β18+51871β13+695956β12+304506β10473937β9+864144 - 208610 \beta_{18} + 51871 \beta_{13} + 695956 \beta_{12} + 304506 \beta_{10} - 473937 \beta_{9} + \cdots - 864144 Copy content Toggle raw display
ν17\nu^{17}== 1052333β19189523β18+778443β17+1463556β16+684396β15+2160447β1 1052333 \beta_{19} - 189523 \beta_{18} + 778443 \beta_{17} + 1463556 \beta_{16} + 684396 \beta_{15} + \cdots - 2160447 \beta_1 Copy content Toggle raw display
ν18\nu^{18}== 1191250β19+2241999β17+3538850β16+1263191β15255635β14++5840221 1191250 \beta_{19} + 2241999 \beta_{17} + 3538850 \beta_{16} + 1263191 \beta_{15} - 255635 \beta_{14} + \cdots + 5840221 Copy content Toggle raw display
ν19\nu^{19}== 1570296β18+5905237β139627314β125780849β10+10668760β9++1788185 1570296 \beta_{18} + 5905237 \beta_{13} - 9627314 \beta_{12} - 5780849 \beta_{10} + 10668760 \beta_{9} + \cdots + 1788185 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/665Z)×\left(\mathbb{Z}/665\mathbb{Z}\right)^\times.

nn 211211 267267 381381
χ(n)\chi(n) β8-\beta_{8} 11 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
106.1
−1.26008 + 2.18252i
−0.994744 + 1.72295i
−0.731711 + 1.26736i
−0.278420 + 0.482238i
0.302407 0.523784i
0.449475 0.778513i
0.745668 1.29153i
0.801658 1.38851i
1.11529 1.93174i
1.35046 2.33906i
−1.26008 2.18252i
−0.994744 1.72295i
−0.731711 1.26736i
−0.278420 0.482238i
0.302407 + 0.523784i
0.449475 + 0.778513i
0.745668 + 1.29153i
0.801658 + 1.38851i
1.11529 + 1.93174i
1.35046 + 2.33906i
−1.26008 + 2.18252i −0.424874 + 0.735903i −2.17561 3.76826i 0.500000 0.866025i −1.07075 1.85460i −1.00000 5.92545 1.13896 + 1.97274i 1.26008 + 2.18252i
106.2 −0.994744 + 1.72295i 0.457864 0.793043i −0.979030 1.69573i 0.500000 0.866025i 0.910914 + 1.57775i −1.00000 −0.0834388 1.08072 + 1.87186i 0.994744 + 1.72295i
106.3 −0.731711 + 1.26736i −1.07446 + 1.86101i −0.0708008 0.122631i 0.500000 0.866025i −1.57238 2.72345i −1.00000 −2.71962 −0.808916 1.40108i 0.731711 + 1.26736i
106.4 −0.278420 + 0.482238i 0.0391618 0.0678302i 0.844964 + 1.46352i 0.500000 0.866025i 0.0218069 + 0.0377706i −1.00000 −2.05470 1.49693 + 2.59276i 0.278420 + 0.482238i
106.5 0.302407 0.523784i 0.354617 0.614215i 0.817100 + 1.41526i 0.500000 0.866025i −0.214477 0.371485i −1.00000 2.19801 1.24849 + 2.16245i −0.302407 0.523784i
106.6 0.449475 0.778513i −1.28912 + 2.23283i 0.595945 + 1.03221i 0.500000 0.866025i 1.15886 + 2.00720i −1.00000 2.86935 −1.82367 3.15869i −0.449475 0.778513i
106.7 0.745668 1.29153i 1.62892 2.82136i −0.112041 0.194061i 0.500000 0.866025i −2.42926 4.20760i −1.00000 2.64849 −3.80673 6.59345i −0.745668 1.29153i
106.8 0.801658 1.38851i 0.392253 0.679403i −0.285310 0.494171i 0.500000 0.866025i −0.628906 1.08930i −1.00000 2.29175 1.19227 + 2.06508i −0.801658 1.38851i
106.9 1.11529 1.93174i −1.60334 + 2.77707i −1.48775 2.57686i 0.500000 0.866025i 3.57639 + 6.19449i −1.00000 −2.17594 −3.64141 6.30711i −1.11529 1.93174i
106.10 1.35046 2.33906i 1.01898 1.76493i −2.64747 4.58555i 0.500000 0.866025i −2.75219 4.76693i −1.00000 −8.89934 −0.576655 0.998797i −1.35046 2.33906i
596.1 −1.26008 2.18252i −0.424874 0.735903i −2.17561 + 3.76826i 0.500000 + 0.866025i −1.07075 + 1.85460i −1.00000 5.92545 1.13896 1.97274i 1.26008 2.18252i
596.2 −0.994744 1.72295i 0.457864 + 0.793043i −0.979030 + 1.69573i 0.500000 + 0.866025i 0.910914 1.57775i −1.00000 −0.0834388 1.08072 1.87186i 0.994744 1.72295i
596.3 −0.731711 1.26736i −1.07446 1.86101i −0.0708008 + 0.122631i 0.500000 + 0.866025i −1.57238 + 2.72345i −1.00000 −2.71962 −0.808916 + 1.40108i 0.731711 1.26736i
596.4 −0.278420 0.482238i 0.0391618 + 0.0678302i 0.844964 1.46352i 0.500000 + 0.866025i 0.0218069 0.0377706i −1.00000 −2.05470 1.49693 2.59276i 0.278420 0.482238i
596.5 0.302407 + 0.523784i 0.354617 + 0.614215i 0.817100 1.41526i 0.500000 + 0.866025i −0.214477 + 0.371485i −1.00000 2.19801 1.24849 2.16245i −0.302407 + 0.523784i
596.6 0.449475 + 0.778513i −1.28912 2.23283i 0.595945 1.03221i 0.500000 + 0.866025i 1.15886 2.00720i −1.00000 2.86935 −1.82367 + 3.15869i −0.449475 + 0.778513i
596.7 0.745668 + 1.29153i 1.62892 + 2.82136i −0.112041 + 0.194061i 0.500000 + 0.866025i −2.42926 + 4.20760i −1.00000 2.64849 −3.80673 + 6.59345i −0.745668 + 1.29153i
596.8 0.801658 + 1.38851i 0.392253 + 0.679403i −0.285310 + 0.494171i 0.500000 + 0.866025i −0.628906 + 1.08930i −1.00000 2.29175 1.19227 2.06508i −0.801658 + 1.38851i
596.9 1.11529 + 1.93174i −1.60334 2.77707i −1.48775 + 2.57686i 0.500000 + 0.866025i 3.57639 6.19449i −1.00000 −2.17594 −3.64141 + 6.30711i −1.11529 + 1.93174i
596.10 1.35046 + 2.33906i 1.01898 + 1.76493i −2.64747 + 4.58555i 0.500000 + 0.866025i −2.75219 + 4.76693i −1.00000 −8.89934 −0.576655 + 0.998797i −1.35046 + 2.33906i
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 106.10
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
19.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 665.2.i.h 20
19.c even 3 1 inner 665.2.i.h 20
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
665.2.i.h 20 1.a even 1 1 trivial
665.2.i.h 20 19.c even 3 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(665,[χ])S_{2}^{\mathrm{new}}(665, [\chi]):

T2203T219+20T21843T217+207T216401T215++1024 T_{2}^{20} - 3 T_{2}^{19} + 20 T_{2}^{18} - 43 T_{2}^{17} + 207 T_{2}^{16} - 401 T_{2}^{15} + \cdots + 1024 Copy content Toggle raw display
T320+T319+20T318+9T317+265T316+75T315+1797T314++16 T_{3}^{20} + T_{3}^{19} + 20 T_{3}^{18} + 9 T_{3}^{17} + 265 T_{3}^{16} + 75 T_{3}^{15} + 1797 T_{3}^{14} + \cdots + 16 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T203T19++1024 T^{20} - 3 T^{19} + \cdots + 1024 Copy content Toggle raw display
33 T20+T19++16 T^{20} + T^{19} + \cdots + 16 Copy content Toggle raw display
55 (T2T+1)10 (T^{2} - T + 1)^{10} Copy content Toggle raw display
77 (T+1)20 (T + 1)^{20} Copy content Toggle raw display
1111 (T10T969T8+479)2 (T^{10} - T^{9} - 69 T^{8} + \cdots - 479)^{2} Copy content Toggle raw display
1313 T206T19++12559936 T^{20} - 6 T^{19} + \cdots + 12559936 Copy content Toggle raw display
1717 T208T19++21307456 T^{20} - 8 T^{19} + \cdots + 21307456 Copy content Toggle raw display
1919 T20++6131066257801 T^{20} + \cdots + 6131066257801 Copy content Toggle raw display
2323 T203T19++1628176 T^{20} - 3 T^{19} + \cdots + 1628176 Copy content Toggle raw display
2929 T20++128247448480321 T^{20} + \cdots + 128247448480321 Copy content Toggle raw display
3131 (T105T9+1901)2 (T^{10} - 5 T^{9} + \cdots - 1901)^{2} Copy content Toggle raw display
3737 (T10+33T9++3060676)2 (T^{10} + 33 T^{9} + \cdots + 3060676)^{2} Copy content Toggle raw display
4141 T20++250275184327744 T^{20} + \cdots + 250275184327744 Copy content Toggle raw display
4343 T20++357737964544 T^{20} + \cdots + 357737964544 Copy content Toggle raw display
4747 T20++245805829814416 T^{20} + \cdots + 245805829814416 Copy content Toggle raw display
5353 T20++12 ⁣ ⁣96 T^{20} + \cdots + 12\!\cdots\!96 Copy content Toggle raw display
5959 T20++129037263334849 T^{20} + \cdots + 129037263334849 Copy content Toggle raw display
6161 T20++21 ⁣ ⁣81 T^{20} + \cdots + 21\!\cdots\!81 Copy content Toggle raw display
6767 T20++12031457344 T^{20} + \cdots + 12031457344 Copy content Toggle raw display
7171 T20++150675172561 T^{20} + \cdots + 150675172561 Copy content Toggle raw display
7373 T20++30 ⁣ ⁣84 T^{20} + \cdots + 30\!\cdots\!84 Copy content Toggle raw display
7979 T20++14 ⁣ ⁣41 T^{20} + \cdots + 14\!\cdots\!41 Copy content Toggle raw display
8383 (T10+27T9++36896)2 (T^{10} + 27 T^{9} + \cdots + 36896)^{2} Copy content Toggle raw display
8989 T20++16 ⁣ ⁣61 T^{20} + \cdots + 16\!\cdots\!61 Copy content Toggle raw display
9797 T20++41 ⁣ ⁣76 T^{20} + \cdots + 41\!\cdots\!76 Copy content Toggle raw display
show more
show less