Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [665,2,Mod(106,665)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(665, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([0, 0, 4]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("665.106");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 665.i (of order , degree , minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Relative dimension: | over |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | yes |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
106.1 |
|
−1.26008 | + | 2.18252i | −0.424874 | + | 0.735903i | −2.17561 | − | 3.76826i | 0.500000 | − | 0.866025i | −1.07075 | − | 1.85460i | −1.00000 | 5.92545 | 1.13896 | + | 1.97274i | 1.26008 | + | 2.18252i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
106.2 | −0.994744 | + | 1.72295i | 0.457864 | − | 0.793043i | −0.979030 | − | 1.69573i | 0.500000 | − | 0.866025i | 0.910914 | + | 1.57775i | −1.00000 | −0.0834388 | 1.08072 | + | 1.87186i | 0.994744 | + | 1.72295i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
106.3 | −0.731711 | + | 1.26736i | −1.07446 | + | 1.86101i | −0.0708008 | − | 0.122631i | 0.500000 | − | 0.866025i | −1.57238 | − | 2.72345i | −1.00000 | −2.71962 | −0.808916 | − | 1.40108i | 0.731711 | + | 1.26736i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
106.4 | −0.278420 | + | 0.482238i | 0.0391618 | − | 0.0678302i | 0.844964 | + | 1.46352i | 0.500000 | − | 0.866025i | 0.0218069 | + | 0.0377706i | −1.00000 | −2.05470 | 1.49693 | + | 2.59276i | 0.278420 | + | 0.482238i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
106.5 | 0.302407 | − | 0.523784i | 0.354617 | − | 0.614215i | 0.817100 | + | 1.41526i | 0.500000 | − | 0.866025i | −0.214477 | − | 0.371485i | −1.00000 | 2.19801 | 1.24849 | + | 2.16245i | −0.302407 | − | 0.523784i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
106.6 | 0.449475 | − | 0.778513i | −1.28912 | + | 2.23283i | 0.595945 | + | 1.03221i | 0.500000 | − | 0.866025i | 1.15886 | + | 2.00720i | −1.00000 | 2.86935 | −1.82367 | − | 3.15869i | −0.449475 | − | 0.778513i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
106.7 | 0.745668 | − | 1.29153i | 1.62892 | − | 2.82136i | −0.112041 | − | 0.194061i | 0.500000 | − | 0.866025i | −2.42926 | − | 4.20760i | −1.00000 | 2.64849 | −3.80673 | − | 6.59345i | −0.745668 | − | 1.29153i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
106.8 | 0.801658 | − | 1.38851i | 0.392253 | − | 0.679403i | −0.285310 | − | 0.494171i | 0.500000 | − | 0.866025i | −0.628906 | − | 1.08930i | −1.00000 | 2.29175 | 1.19227 | + | 2.06508i | −0.801658 | − | 1.38851i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
106.9 | 1.11529 | − | 1.93174i | −1.60334 | + | 2.77707i | −1.48775 | − | 2.57686i | 0.500000 | − | 0.866025i | 3.57639 | + | 6.19449i | −1.00000 | −2.17594 | −3.64141 | − | 6.30711i | −1.11529 | − | 1.93174i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
106.10 | 1.35046 | − | 2.33906i | 1.01898 | − | 1.76493i | −2.64747 | − | 4.58555i | 0.500000 | − | 0.866025i | −2.75219 | − | 4.76693i | −1.00000 | −8.89934 | −0.576655 | − | 0.998797i | −1.35046 | − | 2.33906i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
596.1 | −1.26008 | − | 2.18252i | −0.424874 | − | 0.735903i | −2.17561 | + | 3.76826i | 0.500000 | + | 0.866025i | −1.07075 | + | 1.85460i | −1.00000 | 5.92545 | 1.13896 | − | 1.97274i | 1.26008 | − | 2.18252i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
596.2 | −0.994744 | − | 1.72295i | 0.457864 | + | 0.793043i | −0.979030 | + | 1.69573i | 0.500000 | + | 0.866025i | 0.910914 | − | 1.57775i | −1.00000 | −0.0834388 | 1.08072 | − | 1.87186i | 0.994744 | − | 1.72295i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
596.3 | −0.731711 | − | 1.26736i | −1.07446 | − | 1.86101i | −0.0708008 | + | 0.122631i | 0.500000 | + | 0.866025i | −1.57238 | + | 2.72345i | −1.00000 | −2.71962 | −0.808916 | + | 1.40108i | 0.731711 | − | 1.26736i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
596.4 | −0.278420 | − | 0.482238i | 0.0391618 | + | 0.0678302i | 0.844964 | − | 1.46352i | 0.500000 | + | 0.866025i | 0.0218069 | − | 0.0377706i | −1.00000 | −2.05470 | 1.49693 | − | 2.59276i | 0.278420 | − | 0.482238i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
596.5 | 0.302407 | + | 0.523784i | 0.354617 | + | 0.614215i | 0.817100 | − | 1.41526i | 0.500000 | + | 0.866025i | −0.214477 | + | 0.371485i | −1.00000 | 2.19801 | 1.24849 | − | 2.16245i | −0.302407 | + | 0.523784i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
596.6 | 0.449475 | + | 0.778513i | −1.28912 | − | 2.23283i | 0.595945 | − | 1.03221i | 0.500000 | + | 0.866025i | 1.15886 | − | 2.00720i | −1.00000 | 2.86935 | −1.82367 | + | 3.15869i | −0.449475 | + | 0.778513i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
596.7 | 0.745668 | + | 1.29153i | 1.62892 | + | 2.82136i | −0.112041 | + | 0.194061i | 0.500000 | + | 0.866025i | −2.42926 | + | 4.20760i | −1.00000 | 2.64849 | −3.80673 | + | 6.59345i | −0.745668 | + | 1.29153i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
596.8 | 0.801658 | + | 1.38851i | 0.392253 | + | 0.679403i | −0.285310 | + | 0.494171i | 0.500000 | + | 0.866025i | −0.628906 | + | 1.08930i | −1.00000 | 2.29175 | 1.19227 | − | 2.06508i | −0.801658 | + | 1.38851i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
596.9 | 1.11529 | + | 1.93174i | −1.60334 | − | 2.77707i | −1.48775 | + | 2.57686i | 0.500000 | + | 0.866025i | 3.57639 | − | 6.19449i | −1.00000 | −2.17594 | −3.64141 | + | 6.30711i | −1.11529 | + | 1.93174i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
596.10 | 1.35046 | + | 2.33906i | 1.01898 | + | 1.76493i | −2.64747 | + | 4.58555i | 0.500000 | + | 0.866025i | −2.75219 | + | 4.76693i | −1.00000 | −8.89934 | −0.576655 | + | 0.998797i | −1.35046 | + | 2.33906i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
19.c | even | 3 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 665.2.i.h | ✓ | 20 |
19.c | even | 3 | 1 | inner | 665.2.i.h | ✓ | 20 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
665.2.i.h | ✓ | 20 | 1.a | even | 1 | 1 | trivial |
665.2.i.h | ✓ | 20 | 19.c | even | 3 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on :
|
|