L(s) = 1 | − 2·2-s + 3-s − 4-s − 2·5-s − 2·6-s − 4·7-s + 8·8-s + 3·9-s + 4·10-s + 5·11-s − 12-s + 3·13-s + 8·14-s − 2·15-s − 7·16-s − 5·17-s − 6·18-s + 8·19-s + 2·20-s − 4·21-s − 10·22-s − 9·23-s + 8·24-s + 3·25-s − 6·26-s + 8·27-s + 4·28-s + ⋯ |
L(s) = 1 | − 1.41·2-s + 0.577·3-s − 1/2·4-s − 0.894·5-s − 0.816·6-s − 1.51·7-s + 2.82·8-s + 9-s + 1.26·10-s + 1.50·11-s − 0.288·12-s + 0.832·13-s + 2.13·14-s − 0.516·15-s − 7/4·16-s − 1.21·17-s − 1.41·18-s + 1.83·19-s + 0.447·20-s − 0.872·21-s − 2.13·22-s − 1.87·23-s + 1.63·24-s + 3/5·25-s − 1.17·26-s + 1.53·27-s + 0.755·28-s + ⋯ |
Λ(s)=(=(442225s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(442225s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
442225
= 52⋅72⋅192
|
Sign: |
1
|
Analytic conductor: |
28.1966 |
Root analytic conductor: |
2.30435 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 442225, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
0.7166992378 |
L(21) |
≈ |
0.7166992378 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 5 | C1 | (1+T)2 |
| 7 | C2 | 1+4T+pT2 |
| 19 | C2 | 1−8T+pT2 |
good | 2 | C2 | (1+T+pT2)2 |
| 3 | C22 | 1−T−2T2−pT3+p2T4 |
| 11 | C22 | 1−5T+14T2−5pT3+p2T4 |
| 13 | C22 | 1−3T−4T2−3pT3+p2T4 |
| 17 | C22 | 1+5T+8T2+5pT3+p2T4 |
| 23 | C22 | 1+9T+58T2+9pT3+p2T4 |
| 29 | C22 | 1−9T+52T2−9pT3+p2T4 |
| 31 | C22 | 1+3T−22T2+3pT3+p2T4 |
| 37 | C2 | (1−10T+pT2)(1−T+pT2) |
| 41 | C22 | 1−T−40T2−pT3+p2T4 |
| 43 | C2 | (1−8T+pT2)(1+13T+pT2) |
| 47 | C22 | 1−11T+74T2−11pT3+p2T4 |
| 53 | C2 | (1−6T+pT2)2 |
| 59 | C22 | 1−7T−10T2−7pT3+p2T4 |
| 61 | C22 | 1−5T−36T2−5pT3+p2T4 |
| 67 | C2 | (1+4T+pT2)2 |
| 71 | C22 | 1+7T−22T2+7pT3+p2T4 |
| 73 | C22 | 1+T−72T2+pT3+p2T4 |
| 79 | C2 | (1+pT2)2 |
| 83 | C2 | (1−12T+pT2)2 |
| 89 | C22 | 1−17T+200T2−17pT3+p2T4 |
| 97 | C22 | 1+13T+72T2+13pT3+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.31201179122932016291704514637, −10.23240039682365054464786681347, −9.564495612730090921430754350442, −9.533204347436516416371844818571, −8.995411601444171612476030579584, −8.569823474406876398438481966605, −8.508056358228760756961154666897, −7.78250764314528178265085644923, −7.24997488309787050170000198673, −7.21025820957367086209681934264, −6.31962190650771400504595454890, −6.19068219209790629693712962741, −5.11316265743901630319528364038, −4.48888002085076148039709185438, −4.01257016378760112318340931330, −3.86485531249861752285261358268, −3.26137191542927263150707261882, −2.23388735747669767883354225607, −1.09941908342999494631582219071, −0.74357130591738392566940871635,
0.74357130591738392566940871635, 1.09941908342999494631582219071, 2.23388735747669767883354225607, 3.26137191542927263150707261882, 3.86485531249861752285261358268, 4.01257016378760112318340931330, 4.48888002085076148039709185438, 5.11316265743901630319528364038, 6.19068219209790629693712962741, 6.31962190650771400504595454890, 7.21025820957367086209681934264, 7.24997488309787050170000198673, 7.78250764314528178265085644923, 8.508056358228760756961154666897, 8.569823474406876398438481966605, 8.995411601444171612476030579584, 9.533204347436516416371844818571, 9.564495612730090921430754350442, 10.23240039682365054464786681347, 10.31201179122932016291704514637