Properties

Label 665.2.l.b
Level $665$
Weight $2$
Character orbit 665.l
Analytic conductor $5.310$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [665,2,Mod(11,665)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(665, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("665.11");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 665 = 5 \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 665.l (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.31005173442\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - q^{2} + \zeta_{6} q^{3} - q^{4} - q^{5} - \zeta_{6} q^{6} + (2 \zeta_{6} - 3) q^{7} + 3 q^{8} + ( - 2 \zeta_{6} + 2) q^{9} + q^{10} + ( - 5 \zeta_{6} + 5) q^{11} - \zeta_{6} q^{12} + 3 \zeta_{6} q^{13} + \cdots - 10 \zeta_{6} q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} + q^{3} - 2 q^{4} - 2 q^{5} - q^{6} - 4 q^{7} + 6 q^{8} + 2 q^{9} + 2 q^{10} + 5 q^{11} - q^{12} + 3 q^{13} + 4 q^{14} - q^{15} - 2 q^{16} - 5 q^{17} - 2 q^{18} + 8 q^{19} + 2 q^{20} - 5 q^{21}+ \cdots - 10 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/665\mathbb{Z}\right)^\times\).

\(n\) \(211\) \(267\) \(381\)
\(\chi(n)\) \(-\zeta_{6}\) \(1\) \(-\zeta_{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
11.1
0.500000 + 0.866025i
0.500000 0.866025i
−1.00000 0.500000 + 0.866025i −1.00000 −1.00000 −0.500000 0.866025i −2.00000 + 1.73205i 3.00000 1.00000 1.73205i 1.00000
121.1 −1.00000 0.500000 0.866025i −1.00000 −1.00000 −0.500000 + 0.866025i −2.00000 1.73205i 3.00000 1.00000 + 1.73205i 1.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
133.h even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 665.2.l.b yes 2
7.c even 3 1 665.2.k.d 2
19.c even 3 1 665.2.k.d 2
133.h even 3 1 inner 665.2.l.b yes 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
665.2.k.d 2 7.c even 3 1
665.2.k.d 2 19.c even 3 1
665.2.l.b yes 2 1.a even 1 1 trivial
665.2.l.b yes 2 133.h even 3 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(665, [\chi])\):

\( T_{2} + 1 \) Copy content Toggle raw display
\( T_{3}^{2} - T_{3} + 1 \) Copy content Toggle raw display
\( T_{11}^{2} - 5T_{11} + 25 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 1)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$5$ \( (T + 1)^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + 4T + 7 \) Copy content Toggle raw display
$11$ \( T^{2} - 5T + 25 \) Copy content Toggle raw display
$13$ \( T^{2} - 3T + 9 \) Copy content Toggle raw display
$17$ \( T^{2} + 5T + 25 \) Copy content Toggle raw display
$19$ \( T^{2} - 8T + 19 \) Copy content Toggle raw display
$23$ \( T^{2} + 9T + 81 \) Copy content Toggle raw display
$29$ \( T^{2} - 9T + 81 \) Copy content Toggle raw display
$31$ \( T^{2} + 3T + 9 \) Copy content Toggle raw display
$37$ \( T^{2} - 11T + 121 \) Copy content Toggle raw display
$41$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$43$ \( T^{2} + 5T + 25 \) Copy content Toggle raw display
$47$ \( T^{2} - 11T + 121 \) Copy content Toggle raw display
$53$ \( (T - 6)^{2} \) Copy content Toggle raw display
$59$ \( T^{2} - 7T + 49 \) Copy content Toggle raw display
$61$ \( T^{2} - 5T + 25 \) Copy content Toggle raw display
$67$ \( (T + 4)^{2} \) Copy content Toggle raw display
$71$ \( T^{2} + 7T + 49 \) Copy content Toggle raw display
$73$ \( T^{2} + T + 1 \) Copy content Toggle raw display
$79$ \( T^{2} \) Copy content Toggle raw display
$83$ \( (T - 12)^{2} \) Copy content Toggle raw display
$89$ \( T^{2} - 17T + 289 \) Copy content Toggle raw display
$97$ \( T^{2} + 13T + 169 \) Copy content Toggle raw display
show more
show less