Properties

Label 665.2.k.d
Level $665$
Weight $2$
Character orbit 665.k
Analytic conductor $5.310$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [665,2,Mod(296,665)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(665, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("665.296");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 665 = 5 \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 665.k (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.31005173442\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \zeta_{6} q^{2} - q^{3} + ( - \zeta_{6} + 1) q^{4} + \zeta_{6} q^{5} - \zeta_{6} q^{6} + ( - 2 \zeta_{6} - 1) q^{7} + 3 q^{8} - 2 q^{9} +O(q^{10}) \) Copy content Toggle raw display \( q + \zeta_{6} q^{2} - q^{3} + ( - \zeta_{6} + 1) q^{4} + \zeta_{6} q^{5} - \zeta_{6} q^{6} + ( - 2 \zeta_{6} - 1) q^{7} + 3 q^{8} - 2 q^{9} + (\zeta_{6} - 1) q^{10} + 5 \zeta_{6} q^{11} + (\zeta_{6} - 1) q^{12} + 3 \zeta_{6} q^{13} + ( - 3 \zeta_{6} + 2) q^{14} - \zeta_{6} q^{15} + \zeta_{6} q^{16} + 5 q^{17} - 2 \zeta_{6} q^{18} + ( - 5 \zeta_{6} + 2) q^{19} + q^{20} + (2 \zeta_{6} + 1) q^{21} + (5 \zeta_{6} - 5) q^{22} + 9 q^{23} - 3 q^{24} + (\zeta_{6} - 1) q^{25} + (3 \zeta_{6} - 3) q^{26} + 5 q^{27} + (\zeta_{6} - 3) q^{28} + 9 \zeta_{6} q^{29} + ( - \zeta_{6} + 1) q^{30} - 3 \zeta_{6} q^{31} + ( - 5 \zeta_{6} + 5) q^{32} - 5 \zeta_{6} q^{33} + 5 \zeta_{6} q^{34} + ( - 3 \zeta_{6} + 2) q^{35} + (2 \zeta_{6} - 2) q^{36} + ( - 11 \zeta_{6} + 11) q^{37} + ( - 3 \zeta_{6} + 5) q^{38} - 3 \zeta_{6} q^{39} + 3 \zeta_{6} q^{40} + ( - \zeta_{6} + 1) q^{41} + (3 \zeta_{6} - 2) q^{42} + (5 \zeta_{6} - 5) q^{43} + 5 q^{44} - 2 \zeta_{6} q^{45} + 9 \zeta_{6} q^{46} - 11 q^{47} - \zeta_{6} q^{48} + (8 \zeta_{6} - 3) q^{49} - q^{50} - 5 q^{51} + 3 q^{52} + (6 \zeta_{6} - 6) q^{53} + 5 \zeta_{6} q^{54} + (5 \zeta_{6} - 5) q^{55} + ( - 6 \zeta_{6} - 3) q^{56} + (5 \zeta_{6} - 2) q^{57} + (9 \zeta_{6} - 9) q^{58} - 7 q^{59} - q^{60} - 5 q^{61} + ( - 3 \zeta_{6} + 3) q^{62} + (4 \zeta_{6} + 2) q^{63} + 7 q^{64} + (3 \zeta_{6} - 3) q^{65} + ( - 5 \zeta_{6} + 5) q^{66} + ( - 4 \zeta_{6} + 4) q^{67} + ( - 5 \zeta_{6} + 5) q^{68} - 9 q^{69} + ( - \zeta_{6} + 3) q^{70} + (7 \zeta_{6} - 7) q^{71} - 6 q^{72} + q^{73} + 11 q^{74} + ( - \zeta_{6} + 1) q^{75} + ( - 2 \zeta_{6} - 3) q^{76} + ( - 15 \zeta_{6} + 10) q^{77} + ( - 3 \zeta_{6} + 3) q^{78} + (\zeta_{6} - 1) q^{80} + q^{81} + q^{82} + 12 q^{83} + ( - \zeta_{6} + 3) q^{84} + 5 \zeta_{6} q^{85} - 5 q^{86} - 9 \zeta_{6} q^{87} + 15 \zeta_{6} q^{88} - 17 q^{89} + ( - 2 \zeta_{6} + 2) q^{90} + ( - 9 \zeta_{6} + 6) q^{91} + ( - 9 \zeta_{6} + 9) q^{92} + 3 \zeta_{6} q^{93} - 11 \zeta_{6} q^{94} + ( - 3 \zeta_{6} + 5) q^{95} + (5 \zeta_{6} - 5) q^{96} + (13 \zeta_{6} - 13) q^{97} + (5 \zeta_{6} - 8) q^{98} - 10 \zeta_{6} q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{2} - 2 q^{3} + q^{4} + q^{5} - q^{6} - 4 q^{7} + 6 q^{8} - 4 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + q^{2} - 2 q^{3} + q^{4} + q^{5} - q^{6} - 4 q^{7} + 6 q^{8} - 4 q^{9} - q^{10} + 5 q^{11} - q^{12} + 3 q^{13} + q^{14} - q^{15} + q^{16} + 10 q^{17} - 2 q^{18} - q^{19} + 2 q^{20} + 4 q^{21} - 5 q^{22} + 18 q^{23} - 6 q^{24} - q^{25} - 3 q^{26} + 10 q^{27} - 5 q^{28} + 9 q^{29} + q^{30} - 3 q^{31} + 5 q^{32} - 5 q^{33} + 5 q^{34} + q^{35} - 2 q^{36} + 11 q^{37} + 7 q^{38} - 3 q^{39} + 3 q^{40} + q^{41} - q^{42} - 5 q^{43} + 10 q^{44} - 2 q^{45} + 9 q^{46} - 22 q^{47} - q^{48} + 2 q^{49} - 2 q^{50} - 10 q^{51} + 6 q^{52} - 6 q^{53} + 5 q^{54} - 5 q^{55} - 12 q^{56} + q^{57} - 9 q^{58} - 14 q^{59} - 2 q^{60} - 10 q^{61} + 3 q^{62} + 8 q^{63} + 14 q^{64} - 3 q^{65} + 5 q^{66} + 4 q^{67} + 5 q^{68} - 18 q^{69} + 5 q^{70} - 7 q^{71} - 12 q^{72} + 2 q^{73} + 22 q^{74} + q^{75} - 8 q^{76} + 5 q^{77} + 3 q^{78} - q^{80} + 2 q^{81} + 2 q^{82} + 24 q^{83} + 5 q^{84} + 5 q^{85} - 10 q^{86} - 9 q^{87} + 15 q^{88} - 34 q^{89} + 2 q^{90} + 3 q^{91} + 9 q^{92} + 3 q^{93} - 11 q^{94} + 7 q^{95} - 5 q^{96} - 13 q^{97} - 11 q^{98} - 10 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/665\mathbb{Z}\right)^\times\).

\(n\) \(211\) \(267\) \(381\)
\(\chi(n)\) \(-\zeta_{6}\) \(1\) \(-1 + \zeta_{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
296.1
0.500000 + 0.866025i
0.500000 0.866025i
0.500000 + 0.866025i −1.00000 0.500000 0.866025i 0.500000 + 0.866025i −0.500000 0.866025i −2.00000 1.73205i 3.00000 −2.00000 −0.500000 + 0.866025i
501.1 0.500000 0.866025i −1.00000 0.500000 + 0.866025i 0.500000 0.866025i −0.500000 + 0.866025i −2.00000 + 1.73205i 3.00000 −2.00000 −0.500000 0.866025i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
133.g even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 665.2.k.d 2
7.c even 3 1 665.2.l.b yes 2
19.c even 3 1 665.2.l.b yes 2
133.g even 3 1 inner 665.2.k.d 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
665.2.k.d 2 1.a even 1 1 trivial
665.2.k.d 2 133.g even 3 1 inner
665.2.l.b yes 2 7.c even 3 1
665.2.l.b yes 2 19.c even 3 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(665, [\chi])\):

\( T_{2}^{2} - T_{2} + 1 \) Copy content Toggle raw display
\( T_{3} + 1 \) Copy content Toggle raw display
\( T_{11}^{2} - 5T_{11} + 25 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$3$ \( (T + 1)^{2} \) Copy content Toggle raw display
$5$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$7$ \( T^{2} + 4T + 7 \) Copy content Toggle raw display
$11$ \( T^{2} - 5T + 25 \) Copy content Toggle raw display
$13$ \( T^{2} - 3T + 9 \) Copy content Toggle raw display
$17$ \( (T - 5)^{2} \) Copy content Toggle raw display
$19$ \( T^{2} + T + 19 \) Copy content Toggle raw display
$23$ \( (T - 9)^{2} \) Copy content Toggle raw display
$29$ \( T^{2} - 9T + 81 \) Copy content Toggle raw display
$31$ \( T^{2} + 3T + 9 \) Copy content Toggle raw display
$37$ \( T^{2} - 11T + 121 \) Copy content Toggle raw display
$41$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$43$ \( T^{2} + 5T + 25 \) Copy content Toggle raw display
$47$ \( (T + 11)^{2} \) Copy content Toggle raw display
$53$ \( T^{2} + 6T + 36 \) Copy content Toggle raw display
$59$ \( (T + 7)^{2} \) Copy content Toggle raw display
$61$ \( (T + 5)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} - 4T + 16 \) Copy content Toggle raw display
$71$ \( T^{2} + 7T + 49 \) Copy content Toggle raw display
$73$ \( (T - 1)^{2} \) Copy content Toggle raw display
$79$ \( T^{2} \) Copy content Toggle raw display
$83$ \( (T - 12)^{2} \) Copy content Toggle raw display
$89$ \( (T + 17)^{2} \) Copy content Toggle raw display
$97$ \( T^{2} + 13T + 169 \) Copy content Toggle raw display
show more
show less