Properties

Label 665.2.k.d
Level 665665
Weight 22
Character orbit 665.k
Analytic conductor 5.3105.310
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [665,2,Mod(296,665)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(665, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("665.296");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 665=5719 665 = 5 \cdot 7 \cdot 19
Weight: k k == 2 2
Character orbit: [χ][\chi] == 665.k (of order 33, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 5.310051734425.31005173442
Analytic rank: 00
Dimension: 22
Coefficient field: Q(3)\Q(\sqrt{-3})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2x+1 x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: SU(2)[C3]\mathrm{SU}(2)[C_{3}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a primitive root of unity ζ6\zeta_{6}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+ζ6q2q3+(ζ6+1)q4+ζ6q5ζ6q6+(2ζ61)q7+3q82q9+(ζ61)q10+5ζ6q11+(ζ61)q12+10ζ6q99+O(q100) q + \zeta_{6} q^{2} - q^{3} + ( - \zeta_{6} + 1) q^{4} + \zeta_{6} q^{5} - \zeta_{6} q^{6} + ( - 2 \zeta_{6} - 1) q^{7} + 3 q^{8} - 2 q^{9} + (\zeta_{6} - 1) q^{10} + 5 \zeta_{6} q^{11} + (\zeta_{6} - 1) q^{12} + \cdots - 10 \zeta_{6} q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q+q22q3+q4+q5q64q7+6q84q9q10+5q11q12+3q13+q14q15+q16+10q172q18q19+2q20+4q21+10q99+O(q100) 2 q + q^{2} - 2 q^{3} + q^{4} + q^{5} - q^{6} - 4 q^{7} + 6 q^{8} - 4 q^{9} - q^{10} + 5 q^{11} - q^{12} + 3 q^{13} + q^{14} - q^{15} + q^{16} + 10 q^{17} - 2 q^{18} - q^{19} + 2 q^{20} + 4 q^{21}+ \cdots - 10 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/665Z)×\left(\mathbb{Z}/665\mathbb{Z}\right)^\times.

nn 211211 267267 381381
χ(n)\chi(n) ζ6-\zeta_{6} 11 1+ζ6-1 + \zeta_{6}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
296.1
0.500000 + 0.866025i
0.500000 0.866025i
0.500000 + 0.866025i −1.00000 0.500000 0.866025i 0.500000 + 0.866025i −0.500000 0.866025i −2.00000 1.73205i 3.00000 −2.00000 −0.500000 + 0.866025i
501.1 0.500000 0.866025i −1.00000 0.500000 + 0.866025i 0.500000 0.866025i −0.500000 + 0.866025i −2.00000 + 1.73205i 3.00000 −2.00000 −0.500000 0.866025i
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
133.g even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 665.2.k.d 2
7.c even 3 1 665.2.l.b yes 2
19.c even 3 1 665.2.l.b yes 2
133.g even 3 1 inner 665.2.k.d 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
665.2.k.d 2 1.a even 1 1 trivial
665.2.k.d 2 133.g even 3 1 inner
665.2.l.b yes 2 7.c even 3 1
665.2.l.b yes 2 19.c even 3 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(665,[χ])S_{2}^{\mathrm{new}}(665, [\chi]):

T22T2+1 T_{2}^{2} - T_{2} + 1 Copy content Toggle raw display
T3+1 T_{3} + 1 Copy content Toggle raw display
T1125T11+25 T_{11}^{2} - 5T_{11} + 25 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2T+1 T^{2} - T + 1 Copy content Toggle raw display
33 (T+1)2 (T + 1)^{2} Copy content Toggle raw display
55 T2T+1 T^{2} - T + 1 Copy content Toggle raw display
77 T2+4T+7 T^{2} + 4T + 7 Copy content Toggle raw display
1111 T25T+25 T^{2} - 5T + 25 Copy content Toggle raw display
1313 T23T+9 T^{2} - 3T + 9 Copy content Toggle raw display
1717 (T5)2 (T - 5)^{2} Copy content Toggle raw display
1919 T2+T+19 T^{2} + T + 19 Copy content Toggle raw display
2323 (T9)2 (T - 9)^{2} Copy content Toggle raw display
2929 T29T+81 T^{2} - 9T + 81 Copy content Toggle raw display
3131 T2+3T+9 T^{2} + 3T + 9 Copy content Toggle raw display
3737 T211T+121 T^{2} - 11T + 121 Copy content Toggle raw display
4141 T2T+1 T^{2} - T + 1 Copy content Toggle raw display
4343 T2+5T+25 T^{2} + 5T + 25 Copy content Toggle raw display
4747 (T+11)2 (T + 11)^{2} Copy content Toggle raw display
5353 T2+6T+36 T^{2} + 6T + 36 Copy content Toggle raw display
5959 (T+7)2 (T + 7)^{2} Copy content Toggle raw display
6161 (T+5)2 (T + 5)^{2} Copy content Toggle raw display
6767 T24T+16 T^{2} - 4T + 16 Copy content Toggle raw display
7171 T2+7T+49 T^{2} + 7T + 49 Copy content Toggle raw display
7373 (T1)2 (T - 1)^{2} Copy content Toggle raw display
7979 T2 T^{2} Copy content Toggle raw display
8383 (T12)2 (T - 12)^{2} Copy content Toggle raw display
8989 (T+17)2 (T + 17)^{2} Copy content Toggle raw display
9797 T2+13T+169 T^{2} + 13T + 169 Copy content Toggle raw display
show more
show less