L(s) = 1 | + i·2-s − 4-s + 3.79i·5-s − 2·7-s − i·8-s − 3.79·10-s − 3.79·11-s + 0.791i·13-s − 2i·14-s + 16-s + 1.58i·17-s − 7.58i·19-s − 3.79i·20-s − 3.79i·22-s − 0.791i·23-s + ⋯ |
L(s) = 1 | + 0.707i·2-s − 0.5·4-s + 1.69i·5-s − 0.755·7-s − 0.353i·8-s − 1.19·10-s − 1.14·11-s + 0.219i·13-s − 0.534i·14-s + 0.250·16-s + 0.383i·17-s − 1.73i·19-s − 0.847i·20-s − 0.808i·22-s − 0.164i·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 666 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.753 + 0.657i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 666 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.753 + 0.657i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.190086 - 0.506834i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.190086 - 0.506834i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - iT \) |
| 3 | \( 1 \) |
| 37 | \( 1 + (-4 - 4.58i)T \) |
good | 5 | \( 1 - 3.79iT - 5T^{2} \) |
| 7 | \( 1 + 2T + 7T^{2} \) |
| 11 | \( 1 + 3.79T + 11T^{2} \) |
| 13 | \( 1 - 0.791iT - 13T^{2} \) |
| 17 | \( 1 - 1.58iT - 17T^{2} \) |
| 19 | \( 1 + 7.58iT - 19T^{2} \) |
| 23 | \( 1 + 0.791iT - 23T^{2} \) |
| 29 | \( 1 - 0.791iT - 29T^{2} \) |
| 31 | \( 1 - 5.37iT - 31T^{2} \) |
| 41 | \( 1 + 5.20T + 41T^{2} \) |
| 43 | \( 1 + 6iT - 43T^{2} \) |
| 47 | \( 1 + 1.58T + 47T^{2} \) |
| 53 | \( 1 + 7.58T + 53T^{2} \) |
| 59 | \( 1 - 7.58iT - 59T^{2} \) |
| 61 | \( 1 - 8.20iT - 61T^{2} \) |
| 67 | \( 1 + 7.37T + 67T^{2} \) |
| 71 | \( 1 + 9.16T + 71T^{2} \) |
| 73 | \( 1 - 9.37T + 73T^{2} \) |
| 79 | \( 1 - 12.7iT - 79T^{2} \) |
| 83 | \( 1 - 3.16T + 83T^{2} \) |
| 89 | \( 1 + 6iT - 89T^{2} \) |
| 97 | \( 1 + 4.41iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.75488256709262226526661169343, −10.28929436318678922861526341096, −9.354588881532662324594902557084, −8.276855128813773325338427107034, −7.21134759533097361410516820749, −6.79052660820167491008033271997, −5.95197524910413501191930560600, −4.77260010823549206405443747235, −3.34420486172461216336497628818, −2.60766675753457366902952039985,
0.27756468814704089818912181389, 1.76939272541796559300760073266, 3.23479268065133357380490257308, 4.36858364394398006052302008151, 5.26826617512832512140687737241, 6.05326525230033143737409132792, 7.82562933600375919644057694482, 8.240807796249019618213388025329, 9.449638943512191518881329597306, 9.759890212200888989125797503807