L(s) = 1 | + i·2-s − 4-s + 3.79i·5-s − 2·7-s − i·8-s − 3.79·10-s − 3.79·11-s + 0.791i·13-s − 2i·14-s + 16-s + 1.58i·17-s − 7.58i·19-s − 3.79i·20-s − 3.79i·22-s − 0.791i·23-s + ⋯ |
L(s) = 1 | + 0.707i·2-s − 0.5·4-s + 1.69i·5-s − 0.755·7-s − 0.353i·8-s − 1.19·10-s − 1.14·11-s + 0.219i·13-s − 0.534i·14-s + 0.250·16-s + 0.383i·17-s − 1.73i·19-s − 0.847i·20-s − 0.808i·22-s − 0.164i·23-s + ⋯ |
Λ(s)=(=(666s/2ΓC(s)L(s)(−0.753+0.657i)Λ(2−s)
Λ(s)=(=(666s/2ΓC(s+1/2)L(s)(−0.753+0.657i)Λ(1−s)
Degree: |
2 |
Conductor: |
666
= 2⋅32⋅37
|
Sign: |
−0.753+0.657i
|
Analytic conductor: |
5.31803 |
Root analytic conductor: |
2.30608 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ666(73,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 666, ( :1/2), −0.753+0.657i)
|
Particular Values
L(1) |
≈ |
0.190086−0.506834i |
L(21) |
≈ |
0.190086−0.506834i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−iT |
| 3 | 1 |
| 37 | 1+(−4−4.58i)T |
good | 5 | 1−3.79iT−5T2 |
| 7 | 1+2T+7T2 |
| 11 | 1+3.79T+11T2 |
| 13 | 1−0.791iT−13T2 |
| 17 | 1−1.58iT−17T2 |
| 19 | 1+7.58iT−19T2 |
| 23 | 1+0.791iT−23T2 |
| 29 | 1−0.791iT−29T2 |
| 31 | 1−5.37iT−31T2 |
| 41 | 1+5.20T+41T2 |
| 43 | 1+6iT−43T2 |
| 47 | 1+1.58T+47T2 |
| 53 | 1+7.58T+53T2 |
| 59 | 1−7.58iT−59T2 |
| 61 | 1−8.20iT−61T2 |
| 67 | 1+7.37T+67T2 |
| 71 | 1+9.16T+71T2 |
| 73 | 1−9.37T+73T2 |
| 79 | 1−12.7iT−79T2 |
| 83 | 1−3.16T+83T2 |
| 89 | 1+6iT−89T2 |
| 97 | 1+4.41iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.75488256709262226526661169343, −10.28929436318678922861526341096, −9.354588881532662324594902557084, −8.276855128813773325338427107034, −7.21134759533097361410516820749, −6.79052660820167491008033271997, −5.95197524910413501191930560600, −4.77260010823549206405443747235, −3.34420486172461216336497628818, −2.60766675753457366902952039985,
0.27756468814704089818912181389, 1.76939272541796559300760073266, 3.23479268065133357380490257308, 4.36858364394398006052302008151, 5.26826617512832512140687737241, 6.05326525230033143737409132792, 7.82562933600375919644057694482, 8.240807796249019618213388025329, 9.449638943512191518881329597306, 9.759890212200888989125797503807