Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [666,2,Mod(73,666)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(666, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 1]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("666.73");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 666.c (of order , degree , minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | no (minimal twist has level 74) |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
73.1 |
|
− | 1.00000i | 0 | −1.00000 | − | 3.79129i | 0 | −2.00000 | 1.00000i | 0 | −3.79129 | ||||||||||||||||||||||||||||
73.2 | − | 1.00000i | 0 | −1.00000 | 0.791288i | 0 | −2.00000 | 1.00000i | 0 | 0.791288 | ||||||||||||||||||||||||||||||
73.3 | 1.00000i | 0 | −1.00000 | − | 0.791288i | 0 | −2.00000 | − | 1.00000i | 0 | 0.791288 | |||||||||||||||||||||||||||||
73.4 | 1.00000i | 0 | −1.00000 | 3.79129i | 0 | −2.00000 | − | 1.00000i | 0 | −3.79129 | ||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
37.b | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 666.2.c.b | 4 | |
3.b | odd | 2 | 1 | 74.2.b.a | ✓ | 4 | |
4.b | odd | 2 | 1 | 5328.2.h.m | 4 | ||
12.b | even | 2 | 1 | 592.2.g.c | 4 | ||
15.d | odd | 2 | 1 | 1850.2.d.e | 4 | ||
15.e | even | 4 | 1 | 1850.2.c.g | 4 | ||
15.e | even | 4 | 1 | 1850.2.c.h | 4 | ||
24.f | even | 2 | 1 | 2368.2.g.h | 4 | ||
24.h | odd | 2 | 1 | 2368.2.g.j | 4 | ||
37.b | even | 2 | 1 | inner | 666.2.c.b | 4 | |
111.d | odd | 2 | 1 | 74.2.b.a | ✓ | 4 | |
111.g | even | 4 | 1 | 2738.2.a.h | 2 | ||
111.g | even | 4 | 1 | 2738.2.a.k | 2 | ||
148.b | odd | 2 | 1 | 5328.2.h.m | 4 | ||
444.g | even | 2 | 1 | 592.2.g.c | 4 | ||
555.b | odd | 2 | 1 | 1850.2.d.e | 4 | ||
555.n | even | 4 | 1 | 1850.2.c.g | 4 | ||
555.n | even | 4 | 1 | 1850.2.c.h | 4 | ||
888.c | even | 2 | 1 | 2368.2.g.h | 4 | ||
888.i | odd | 2 | 1 | 2368.2.g.j | 4 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
74.2.b.a | ✓ | 4 | 3.b | odd | 2 | 1 | |
74.2.b.a | ✓ | 4 | 111.d | odd | 2 | 1 | |
592.2.g.c | 4 | 12.b | even | 2 | 1 | ||
592.2.g.c | 4 | 444.g | even | 2 | 1 | ||
666.2.c.b | 4 | 1.a | even | 1 | 1 | trivial | |
666.2.c.b | 4 | 37.b | even | 2 | 1 | inner | |
1850.2.c.g | 4 | 15.e | even | 4 | 1 | ||
1850.2.c.g | 4 | 555.n | even | 4 | 1 | ||
1850.2.c.h | 4 | 15.e | even | 4 | 1 | ||
1850.2.c.h | 4 | 555.n | even | 4 | 1 | ||
1850.2.d.e | 4 | 15.d | odd | 2 | 1 | ||
1850.2.d.e | 4 | 555.b | odd | 2 | 1 | ||
2368.2.g.h | 4 | 24.f | even | 2 | 1 | ||
2368.2.g.h | 4 | 888.c | even | 2 | 1 | ||
2368.2.g.j | 4 | 24.h | odd | 2 | 1 | ||
2368.2.g.j | 4 | 888.i | odd | 2 | 1 | ||
2738.2.a.h | 2 | 111.g | even | 4 | 1 | ||
2738.2.a.k | 2 | 111.g | even | 4 | 1 | ||
5328.2.h.m | 4 | 4.b | odd | 2 | 1 | ||
5328.2.h.m | 4 | 148.b | odd | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on :
|
|