Properties

Label 666.2.c.b
Level $666$
Weight $2$
Character orbit 666.c
Analytic conductor $5.318$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [666,2,Mod(73,666)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(666, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("666.73");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 666 = 2 \cdot 3^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 666.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.31803677462\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{21})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 11x^{2} + 25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 74)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{2} q^{2} - q^{4} + ( - \beta_{2} + \beta_1) q^{5} - 2 q^{7} + \beta_{2} q^{8} + (\beta_{3} - 2) q^{10} + (\beta_{3} - 2) q^{11} + (2 \beta_{2} + \beta_1) q^{13} + 2 \beta_{2} q^{14} + q^{16}+ \cdots + 3 \beta_{2} q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{4} - 8 q^{7} - 6 q^{10} - 6 q^{11} + 4 q^{16} - 10 q^{25} + 6 q^{26} + 8 q^{28} + 12 q^{34} + 16 q^{37} + 12 q^{38} + 6 q^{40} - 30 q^{41} + 6 q^{44} - 6 q^{46} + 12 q^{47} - 12 q^{49} - 12 q^{53}+ \cdots + 60 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 11x^{2} + 25 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} + 6\nu ) / 5 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{2} + 6 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{3} - 6 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 5\beta_{2} - 6\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/666\mathbb{Z}\right)^\times\).

\(n\) \(371\) \(631\)
\(\chi(n)\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
73.1
2.79129i
1.79129i
1.79129i
2.79129i
1.00000i 0 −1.00000 3.79129i 0 −2.00000 1.00000i 0 −3.79129
73.2 1.00000i 0 −1.00000 0.791288i 0 −2.00000 1.00000i 0 0.791288
73.3 1.00000i 0 −1.00000 0.791288i 0 −2.00000 1.00000i 0 0.791288
73.4 1.00000i 0 −1.00000 3.79129i 0 −2.00000 1.00000i 0 −3.79129
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
37.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 666.2.c.b 4
3.b odd 2 1 74.2.b.a 4
4.b odd 2 1 5328.2.h.m 4
12.b even 2 1 592.2.g.c 4
15.d odd 2 1 1850.2.d.e 4
15.e even 4 1 1850.2.c.g 4
15.e even 4 1 1850.2.c.h 4
24.f even 2 1 2368.2.g.h 4
24.h odd 2 1 2368.2.g.j 4
37.b even 2 1 inner 666.2.c.b 4
111.d odd 2 1 74.2.b.a 4
111.g even 4 1 2738.2.a.h 2
111.g even 4 1 2738.2.a.k 2
148.b odd 2 1 5328.2.h.m 4
444.g even 2 1 592.2.g.c 4
555.b odd 2 1 1850.2.d.e 4
555.n even 4 1 1850.2.c.g 4
555.n even 4 1 1850.2.c.h 4
888.c even 2 1 2368.2.g.h 4
888.i odd 2 1 2368.2.g.j 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
74.2.b.a 4 3.b odd 2 1
74.2.b.a 4 111.d odd 2 1
592.2.g.c 4 12.b even 2 1
592.2.g.c 4 444.g even 2 1
666.2.c.b 4 1.a even 1 1 trivial
666.2.c.b 4 37.b even 2 1 inner
1850.2.c.g 4 15.e even 4 1
1850.2.c.g 4 555.n even 4 1
1850.2.c.h 4 15.e even 4 1
1850.2.c.h 4 555.n even 4 1
1850.2.d.e 4 15.d odd 2 1
1850.2.d.e 4 555.b odd 2 1
2368.2.g.h 4 24.f even 2 1
2368.2.g.h 4 888.c even 2 1
2368.2.g.j 4 24.h odd 2 1
2368.2.g.j 4 888.i odd 2 1
2738.2.a.h 2 111.g even 4 1
2738.2.a.k 2 111.g even 4 1
5328.2.h.m 4 4.b odd 2 1
5328.2.h.m 4 148.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(666, [\chi])\):

\( T_{5}^{4} + 15T_{5}^{2} + 9 \) Copy content Toggle raw display
\( T_{7} + 2 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} + 15T^{2} + 9 \) Copy content Toggle raw display
$7$ \( (T + 2)^{4} \) Copy content Toggle raw display
$11$ \( (T^{2} + 3 T - 3)^{2} \) Copy content Toggle raw display
$13$ \( T^{4} + 15T^{2} + 9 \) Copy content Toggle raw display
$17$ \( T^{4} + 60T^{2} + 144 \) Copy content Toggle raw display
$19$ \( T^{4} + 60T^{2} + 144 \) Copy content Toggle raw display
$23$ \( T^{4} + 15T^{2} + 9 \) Copy content Toggle raw display
$29$ \( T^{4} + 15T^{2} + 9 \) Copy content Toggle raw display
$31$ \( T^{4} + 99T^{2} + 2025 \) Copy content Toggle raw display
$37$ \( (T^{2} - 8 T + 37)^{2} \) Copy content Toggle raw display
$41$ \( (T^{2} + 15 T + 51)^{2} \) Copy content Toggle raw display
$43$ \( (T^{2} + 36)^{2} \) Copy content Toggle raw display
$47$ \( (T^{2} - 6 T - 12)^{2} \) Copy content Toggle raw display
$53$ \( (T^{2} + 6 T - 12)^{2} \) Copy content Toggle raw display
$59$ \( T^{4} + 60T^{2} + 144 \) Copy content Toggle raw display
$61$ \( T^{4} + 231 T^{2} + 11025 \) Copy content Toggle raw display
$67$ \( (T^{2} + T - 47)^{2} \) Copy content Toggle raw display
$71$ \( (T^{2} - 84)^{2} \) Copy content Toggle raw display
$73$ \( (T^{2} - 5 T - 41)^{2} \) Copy content Toggle raw display
$79$ \( T^{4} + 231 T^{2} + 11025 \) Copy content Toggle raw display
$83$ \( (T^{2} + 12 T - 48)^{2} \) Copy content Toggle raw display
$89$ \( (T^{2} + 36)^{2} \) Copy content Toggle raw display
$97$ \( T^{4} + 204T^{2} + 3600 \) Copy content Toggle raw display
show more
show less