Properties

Label 666.2.c.b
Level 666666
Weight 22
Character orbit 666.c
Analytic conductor 5.3185.318
Analytic rank 00
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [666,2,Mod(73,666)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(666, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("666.73");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 666=23237 666 = 2 \cdot 3^{2} \cdot 37
Weight: k k == 2 2
Character orbit: [χ][\chi] == 666.c (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 5.318036774625.31803677462
Analytic rank: 00
Dimension: 44
Coefficient field: Q(i,21)\Q(i, \sqrt{21})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4+11x2+25 x^{4} + 11x^{2} + 25 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 74)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == qβ2q2q4+(β2+β1)q52q7+β2q8+(β32)q10+(β32)q11+(2β2+β1)q13+2β2q14+q16++3β2q98+O(q100) q - \beta_{2} q^{2} - q^{4} + ( - \beta_{2} + \beta_1) q^{5} - 2 q^{7} + \beta_{2} q^{8} + (\beta_{3} - 2) q^{10} + (\beta_{3} - 2) q^{11} + (2 \beta_{2} + \beta_1) q^{13} + 2 \beta_{2} q^{14} + q^{16}+ \cdots + 3 \beta_{2} q^{98}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q4q48q76q106q11+4q1610q25+6q26+8q28+12q34+16q37+12q38+6q4030q41+6q446q46+12q4712q4912q53++60q95+O(q100) 4 q - 4 q^{4} - 8 q^{7} - 6 q^{10} - 6 q^{11} + 4 q^{16} - 10 q^{25} + 6 q^{26} + 8 q^{28} + 12 q^{34} + 16 q^{37} + 12 q^{38} + 6 q^{40} - 30 q^{41} + 6 q^{44} - 6 q^{46} + 12 q^{47} - 12 q^{49} - 12 q^{53}+ \cdots + 60 q^{95}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x4+11x2+25 x^{4} + 11x^{2} + 25 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== (ν3+6ν)/5 ( \nu^{3} + 6\nu ) / 5 Copy content Toggle raw display
β3\beta_{3}== ν2+6 \nu^{2} + 6 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β36 \beta_{3} - 6 Copy content Toggle raw display
ν3\nu^{3}== 5β26β1 5\beta_{2} - 6\beta_1 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/666Z)×\left(\mathbb{Z}/666\mathbb{Z}\right)^\times.

nn 371371 631631
χ(n)\chi(n) 11 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
73.1
2.79129i
1.79129i
1.79129i
2.79129i
1.00000i 0 −1.00000 3.79129i 0 −2.00000 1.00000i 0 −3.79129
73.2 1.00000i 0 −1.00000 0.791288i 0 −2.00000 1.00000i 0 0.791288
73.3 1.00000i 0 −1.00000 0.791288i 0 −2.00000 1.00000i 0 0.791288
73.4 1.00000i 0 −1.00000 3.79129i 0 −2.00000 1.00000i 0 −3.79129
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
37.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 666.2.c.b 4
3.b odd 2 1 74.2.b.a 4
4.b odd 2 1 5328.2.h.m 4
12.b even 2 1 592.2.g.c 4
15.d odd 2 1 1850.2.d.e 4
15.e even 4 1 1850.2.c.g 4
15.e even 4 1 1850.2.c.h 4
24.f even 2 1 2368.2.g.h 4
24.h odd 2 1 2368.2.g.j 4
37.b even 2 1 inner 666.2.c.b 4
111.d odd 2 1 74.2.b.a 4
111.g even 4 1 2738.2.a.h 2
111.g even 4 1 2738.2.a.k 2
148.b odd 2 1 5328.2.h.m 4
444.g even 2 1 592.2.g.c 4
555.b odd 2 1 1850.2.d.e 4
555.n even 4 1 1850.2.c.g 4
555.n even 4 1 1850.2.c.h 4
888.c even 2 1 2368.2.g.h 4
888.i odd 2 1 2368.2.g.j 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
74.2.b.a 4 3.b odd 2 1
74.2.b.a 4 111.d odd 2 1
592.2.g.c 4 12.b even 2 1
592.2.g.c 4 444.g even 2 1
666.2.c.b 4 1.a even 1 1 trivial
666.2.c.b 4 37.b even 2 1 inner
1850.2.c.g 4 15.e even 4 1
1850.2.c.g 4 555.n even 4 1
1850.2.c.h 4 15.e even 4 1
1850.2.c.h 4 555.n even 4 1
1850.2.d.e 4 15.d odd 2 1
1850.2.d.e 4 555.b odd 2 1
2368.2.g.h 4 24.f even 2 1
2368.2.g.h 4 888.c even 2 1
2368.2.g.j 4 24.h odd 2 1
2368.2.g.j 4 888.i odd 2 1
2738.2.a.h 2 111.g even 4 1
2738.2.a.k 2 111.g even 4 1
5328.2.h.m 4 4.b odd 2 1
5328.2.h.m 4 148.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(666,[χ])S_{2}^{\mathrm{new}}(666, [\chi]):

T54+15T52+9 T_{5}^{4} + 15T_{5}^{2} + 9 Copy content Toggle raw display
T7+2 T_{7} + 2 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T2+1)2 (T^{2} + 1)^{2} Copy content Toggle raw display
33 T4 T^{4} Copy content Toggle raw display
55 T4+15T2+9 T^{4} + 15T^{2} + 9 Copy content Toggle raw display
77 (T+2)4 (T + 2)^{4} Copy content Toggle raw display
1111 (T2+3T3)2 (T^{2} + 3 T - 3)^{2} Copy content Toggle raw display
1313 T4+15T2+9 T^{4} + 15T^{2} + 9 Copy content Toggle raw display
1717 T4+60T2+144 T^{4} + 60T^{2} + 144 Copy content Toggle raw display
1919 T4+60T2+144 T^{4} + 60T^{2} + 144 Copy content Toggle raw display
2323 T4+15T2+9 T^{4} + 15T^{2} + 9 Copy content Toggle raw display
2929 T4+15T2+9 T^{4} + 15T^{2} + 9 Copy content Toggle raw display
3131 T4+99T2+2025 T^{4} + 99T^{2} + 2025 Copy content Toggle raw display
3737 (T28T+37)2 (T^{2} - 8 T + 37)^{2} Copy content Toggle raw display
4141 (T2+15T+51)2 (T^{2} + 15 T + 51)^{2} Copy content Toggle raw display
4343 (T2+36)2 (T^{2} + 36)^{2} Copy content Toggle raw display
4747 (T26T12)2 (T^{2} - 6 T - 12)^{2} Copy content Toggle raw display
5353 (T2+6T12)2 (T^{2} + 6 T - 12)^{2} Copy content Toggle raw display
5959 T4+60T2+144 T^{4} + 60T^{2} + 144 Copy content Toggle raw display
6161 T4+231T2+11025 T^{4} + 231 T^{2} + 11025 Copy content Toggle raw display
6767 (T2+T47)2 (T^{2} + T - 47)^{2} Copy content Toggle raw display
7171 (T284)2 (T^{2} - 84)^{2} Copy content Toggle raw display
7373 (T25T41)2 (T^{2} - 5 T - 41)^{2} Copy content Toggle raw display
7979 T4+231T2+11025 T^{4} + 231 T^{2} + 11025 Copy content Toggle raw display
8383 (T2+12T48)2 (T^{2} + 12 T - 48)^{2} Copy content Toggle raw display
8989 (T2+36)2 (T^{2} + 36)^{2} Copy content Toggle raw display
9797 T4+204T2+3600 T^{4} + 204T^{2} + 3600 Copy content Toggle raw display
show more
show less