L(s) = 1 | + (−0.5 + 0.866i)2-s + (−0.120 − 1.72i)3-s + (−0.499 − 0.866i)4-s + (0.181 + 0.314i)5-s + (1.55 + 0.759i)6-s + (2.51 − 4.36i)7-s + 0.999·8-s + (−2.97 + 0.416i)9-s − 0.363·10-s + (1.40 − 2.42i)11-s + (−1.43 + 0.968i)12-s + (1.98 + 3.44i)13-s + (2.51 + 4.36i)14-s + (0.521 − 0.351i)15-s + (−0.5 + 0.866i)16-s − 6.69·17-s + ⋯ |
L(s) = 1 | + (−0.353 + 0.612i)2-s + (−0.0696 − 0.997i)3-s + (−0.249 − 0.433i)4-s + (0.0812 + 0.140i)5-s + (0.635 + 0.310i)6-s + (0.952 − 1.64i)7-s + 0.353·8-s + (−0.990 + 0.138i)9-s − 0.114·10-s + (0.422 − 0.731i)11-s + (−0.414 + 0.279i)12-s + (0.550 + 0.954i)13-s + (0.673 + 1.16i)14-s + (0.134 − 0.0908i)15-s + (−0.125 + 0.216i)16-s − 1.62·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 666 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0351 + 0.999i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 666 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.0351 + 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.808328 - 0.837296i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.808328 - 0.837296i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.5 - 0.866i)T \) |
| 3 | \( 1 + (0.120 + 1.72i)T \) |
| 37 | \( 1 + T \) |
good | 5 | \( 1 + (-0.181 - 0.314i)T + (-2.5 + 4.33i)T^{2} \) |
| 7 | \( 1 + (-2.51 + 4.36i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (-1.40 + 2.42i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (-1.98 - 3.44i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + 6.69T + 17T^{2} \) |
| 19 | \( 1 - 4.01T + 19T^{2} \) |
| 23 | \( 1 + (2.61 + 4.53i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (3.09 - 5.36i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (2.38 + 4.12i)T + (-15.5 + 26.8i)T^{2} \) |
| 41 | \( 1 + (-0.969 - 1.67i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (0.533 - 0.924i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-2.40 + 4.16i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 - 8.18T + 53T^{2} \) |
| 59 | \( 1 + (3.74 + 6.48i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-0.597 + 1.03i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (2.35 + 4.08i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 0.867T + 71T^{2} \) |
| 73 | \( 1 + 7.28T + 73T^{2} \) |
| 79 | \( 1 + (-4.29 + 7.44i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (5.12 - 8.87i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 - 16.1T + 89T^{2} \) |
| 97 | \( 1 + (7.87 - 13.6i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.50906798213104942628100712883, −9.066528532878749892544227588851, −8.424070223600582542800241331233, −7.53549398852154690967042809015, −6.82944086904077452892662157402, −6.24820674677084733398294324246, −4.85722982604022905847331053230, −3.85338460690090373462779535440, −1.91720193321941790790997986872, −0.73329209591714173451359218478,
1.84706988655242206325499761994, 2.96732708966190618784736774459, 4.22539131992868549465825980338, 5.20744891745346969144047572186, 5.86323890536383235690623560178, 7.53752662430550010253085925531, 8.659546890945247594735483343210, 9.000177669269998759480488223914, 9.782985827477241361526784223506, 10.83247308134525509193031634237