Properties

Label 666.2.e.e
Level 666666
Weight 22
Character orbit 666.e
Analytic conductor 5.3185.318
Analytic rank 00
Dimension 2020
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [666,2,Mod(223,666)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(666, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("666.223"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: N N == 666=23237 666 = 2 \cdot 3^{2} \cdot 37
Weight: k k == 2 2
Character orbit: [χ][\chi] == 666.e (of order 33, degree 22, minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20,-10] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 5.318036774625.31803677462
Analytic rank: 00
Dimension: 2020
Relative dimension: 1010 over Q(ζ3)\Q(\zeta_{3})
Coefficient field: Q[x]/(x20+)\mathbb{Q}[x]/(x^{20} + \cdots)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x20+28x18+304x16+1654x14+4950x12+8429x10+8179x8+4427x6++9 x^{20} + 28 x^{18} + 304 x^{16} + 1654 x^{14} + 4950 x^{12} + 8429 x^{10} + 8179 x^{8} + 4427 x^{6} + \cdots + 9 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 34 3^{4}
Twist minimal: yes
Sato-Tate group: SU(2)[C3]\mathrm{SU}(2)[C_{3}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β191,\beta_1,\ldots,\beta_{19} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == qβ11q2+β7q3+(β111)q4β12q5+β14q6+(β17+β15+β9+1)q7+q8+(β15+β11+β2)q9++(2β193β18++5)q99+O(q100) q - \beta_{11} q^{2} + \beta_{7} q^{3} + (\beta_{11} - 1) q^{4} - \beta_{12} q^{5} + \beta_{14} q^{6} + (\beta_{17} + \beta_{15} + \beta_{9} + \cdots - 1) q^{7} + q^{8} + ( - \beta_{15} + \beta_{11} + \cdots - \beta_{2}) q^{9}+ \cdots + ( - 2 \beta_{19} - 3 \beta_{18} + \cdots + 5) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 20q10q2+2q310q4q5+2q6q7+20q8+2q9+2q103q114q1212q13q1413q1510q16+24q17+2q18+48q19q20++49q99+O(q100) 20 q - 10 q^{2} + 2 q^{3} - 10 q^{4} - q^{5} + 2 q^{6} - q^{7} + 20 q^{8} + 2 q^{9} + 2 q^{10} - 3 q^{11} - 4 q^{12} - 12 q^{13} - q^{14} - 13 q^{15} - 10 q^{16} + 24 q^{17} + 2 q^{18} + 48 q^{19} - q^{20}+ \cdots + 49 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x20+28x18+304x16+1654x14+4950x12+8429x10+8179x8+4427x6++9 x^{20} + 28 x^{18} + 304 x^{16} + 1654 x^{14} + 4950 x^{12} + 8429 x^{10} + 8179 x^{8} + 4427 x^{6} + \cdots + 9 : Copy content Toggle raw display

β1\beta_{1}== (1243960ν193832932ν18+34732066ν17106226166ν16+375273154ν15+119249415)/1496898 ( 1243960 \nu^{19} - 3832932 \nu^{18} + 34732066 \nu^{17} - 106226166 \nu^{16} + 375273154 \nu^{15} + \cdots - 119249415 ) / 1496898 Copy content Toggle raw display
β2\beta_{2}== (1199963ν195507991ν1833315647ν17152699049ν16357040457ν15+189596025)/1496898 ( - 1199963 \nu^{19} - 5507991 \nu^{18} - 33315647 \nu^{17} - 152699049 \nu^{16} - 357040457 \nu^{15} + \cdots - 189596025 ) / 1496898 Copy content Toggle raw display
β3\beta_{3}== (6397ν19210889ν18179116ν175844133ν161944688ν15+6540174)/38382 ( - 6397 \nu^{19} - 210889 \nu^{18} - 179116 \nu^{17} - 5844133 \nu^{16} - 1944688 \nu^{15} + \cdots - 6540174 ) / 38382 Copy content Toggle raw display
β4\beta_{4}== (3327062ν19+1024341ν1892566007ν17+28558644ν16994870559ν15++49564404)/1496898 ( - 3327062 \nu^{19} + 1024341 \nu^{18} - 92566007 \nu^{17} + 28558644 \nu^{16} - 994870559 \nu^{15} + \cdots + 49564404 ) / 1496898 Copy content Toggle raw display
β5\beta_{5}== (29882ν19+10555605ν18672746ν17+292799061ν164524830ν15++352293300)/1496898 ( - 29882 \nu^{19} + 10555605 \nu^{18} - 672746 \nu^{17} + 292799061 \nu^{16} - 4524830 \nu^{15} + \cdots + 352293300 ) / 1496898 Copy content Toggle raw display
β6\beta_{6}== (150130ν184160902ν1644455243ν14235665379ν12676107276ν10+4661364)/19191 ( - 150130 \nu^{18} - 4160902 \nu^{16} - 44455243 \nu^{14} - 235665379 \nu^{12} - 676107276 \nu^{10} + \cdots - 4661364 ) / 19191 Copy content Toggle raw display
β7\beta_{7}== (4829060ν19905205ν18133914299ν1725078143ν161432013381ν15+19834947)/1496898 ( - 4829060 \nu^{19} - 905205 \nu^{18} - 133914299 \nu^{17} - 25078143 \nu^{16} - 1432013381 \nu^{15} + \cdots - 19834947 ) / 1496898 Copy content Toggle raw display
β8\beta_{8}== (210889ν185844133ν1662427025ν14330838624ν12948727305ν10+6540174)/19191 ( - 210889 \nu^{18} - 5844133 \nu^{16} - 62427025 \nu^{14} - 330838624 \nu^{12} - 948727305 \nu^{10} + \cdots - 6540174 ) / 19191 Copy content Toggle raw display
β9\beta_{9}== (6504119ν19+3282018ν18+180387182ν17+91022523ν16+1929414416ν15++101051352)/1496898 ( 6504119 \nu^{19} + 3282018 \nu^{18} + 180387182 \nu^{17} + 91022523 \nu^{16} + 1929414416 \nu^{15} + \cdots + 101051352 ) / 1496898 Copy content Toggle raw display
β10\beta_{10}== (4829060ν1913731597ν18+133914299ν17380632527ν16+1432013381ν15+438696891)/1496898 ( 4829060 \nu^{19} - 13731597 \nu^{18} + 133914299 \nu^{17} - 380632527 \nu^{16} + 1432013381 \nu^{15} + \cdots - 438696891 ) / 1496898 Copy content Toggle raw display
β11\beta_{11}== (210889ν195844133ν1762427025ν15330838624ν13948727305ν11++19191)/38382 ( - 210889 \nu^{19} - 5844133 \nu^{17} - 62427025 \nu^{15} - 330838624 \nu^{13} - 948727305 \nu^{11} + \cdots + 19191 ) / 38382 Copy content Toggle raw display
β12\beta_{12}== (217286ν19150130ν186023249ν174160902ν1664371713ν15+4661364)/38382 ( - 217286 \nu^{19} - 150130 \nu^{18} - 6023249 \nu^{17} - 4160902 \nu^{16} - 64371713 \nu^{15} + \cdots - 4661364 ) / 38382 Copy content Toggle raw display
β13\beta_{13}== (2912306ν19+2083082ν18+80785565ν17+57739298ν16+864263096ν15++70219644)/498966 ( 2912306 \nu^{19} + 2083082 \nu^{18} + 80785565 \nu^{17} + 57739298 \nu^{16} + 864263096 \nu^{15} + \cdots + 70219644 ) / 498966 Copy content Toggle raw display
β14\beta_{14}== (10133216ν193131178ν18280985834ν1786754669ν16+108379620)/1496898 ( - 10133216 \nu^{19} - 3131178 \nu^{18} - 280985834 \nu^{17} - 86754669 \nu^{16} + \cdots - 108379620 ) / 1496898 Copy content Toggle raw display
β15\beta_{15}== (15966142ν19+4181076ν18442556590ν17+115790004ν16++121903200)/1496898 ( - 15966142 \nu^{19} + 4181076 \nu^{18} - 442556590 \nu^{17} + 115790004 \nu^{16} + \cdots + 121903200 ) / 1496898 Copy content Toggle raw display
β16\beta_{16}== (15973354ν199432450ν18+442854961ν17261349731ν16+4733906224ν15+294527052)/1496898 ( 15973354 \nu^{19} - 9432450 \nu^{18} + 442854961 \nu^{17} - 261349731 \nu^{16} + 4733906224 \nu^{15} + \cdots - 294527052 ) / 1496898 Copy content Toggle raw display
β17\beta_{17}== (16682828ν19+3138390ν18+462434138ν17+87053040ν16+4941640280ν15++116322435)/1496898 ( 16682828 \nu^{19} + 3138390 \nu^{18} + 462434138 \nu^{17} + 87053040 \nu^{16} + 4941640280 \nu^{15} + \cdots + 116322435 ) / 1496898 Copy content Toggle raw display
β18\beta_{18}== (15544741ν1915852549ν18+430578757ν17439572225ν16+4596145657ν15+512436312)/1496898 ( 15544741 \nu^{19} - 15852549 \nu^{18} + 430578757 \nu^{17} - 439572225 \nu^{16} + 4596145657 \nu^{15} + \cdots - 512436312 ) / 1496898 Copy content Toggle raw display
β19\beta_{19}== (17452682ν1915038871ν18483828878ν17416918598ν16+481276773)/1496898 ( - 17452682 \nu^{19} - 15038871 \nu^{18} - 483828878 \nu^{17} - 416918598 \nu^{16} + \cdots - 481276773 ) / 1496898 Copy content Toggle raw display
ν\nu== (2β122β11+β8β62β3+1)/3 ( 2\beta_{12} - 2\beta_{11} + \beta_{8} - \beta_{6} - 2\beta_{3} + 1 ) / 3 Copy content Toggle raw display
ν2\nu^{2}== (β18+2β16β15+2β14+β13+β12β10+8)/3 ( - \beta_{18} + 2 \beta_{16} - \beta_{15} + 2 \beta_{14} + \beta_{13} + \beta_{12} - \beta_{10} + \cdots - 8 ) / 3 Copy content Toggle raw display
ν3\nu^{3}== (β19+4β18β17β15+β14+4β1313β12+14)/3 ( \beta_{19} + 4 \beta_{18} - \beta_{17} - \beta_{15} + \beta_{14} + 4 \beta_{13} - 13 \beta_{12} + \cdots - 14 ) / 3 Copy content Toggle raw display
ν4\nu^{4}== (3β19+5β18+β1716β16+8β1516β1411β13++52)/3 ( - 3 \beta_{19} + 5 \beta_{18} + \beta_{17} - 16 \beta_{16} + 8 \beta_{15} - 16 \beta_{14} - 11 \beta_{13} + \cdots + 52 ) / 3 Copy content Toggle raw display
ν5\nu^{5}== (8β1946β18+9β172β16+12β1513β14++136)/3 ( - 8 \beta_{19} - 46 \beta_{18} + 9 \beta_{17} - 2 \beta_{16} + 12 \beta_{15} - 13 \beta_{14} + \cdots + 136 ) / 3 Copy content Toggle raw display
ν6\nu^{6}== (27β1931β1824β17+128β1673β15+134β14+410)/3 ( 27 \beta_{19} - 31 \beta_{18} - 24 \beta_{17} + 128 \beta_{16} - 73 \beta_{15} + 134 \beta_{14} + \cdots - 410 ) / 3 Copy content Toggle raw display
ν7\nu^{7}== (50β19+455β1879β17+48β16110β15+158β14+1215)/3 ( 50 \beta_{19} + 455 \beta_{18} - 79 \beta_{17} + 48 \beta_{16} - 110 \beta_{15} + 158 \beta_{14} + \cdots - 1215 ) / 3 Copy content Toggle raw display
ν8\nu^{8}== (174β19+244β18+318β171061β16+697β151205β14++3419)/3 ( - 174 \beta_{19} + 244 \beta_{18} + 318 \beta_{17} - 1061 \beta_{16} + 697 \beta_{15} - 1205 \beta_{14} + \cdots + 3419 ) / 3 Copy content Toggle raw display
ν9\nu^{9}== (264β194362β18+724β17714β16+900β151785β14++10640)/3 ( - 264 \beta_{19} - 4362 \beta_{18} + 724 \beta_{17} - 714 \beta_{16} + 900 \beta_{15} - 1785 \beta_{14} + \cdots + 10640 ) / 3 Copy content Toggle raw display
ν10\nu^{10}== (822β192170β183527β17+8978β166706β15+11210β14+29180)/3 ( 822 \beta_{19} - 2170 \beta_{18} - 3527 \beta_{17} + 8978 \beta_{16} - 6706 \beta_{15} + 11210 \beta_{14} + \cdots - 29180 ) / 3 Copy content Toggle raw display
ν11\nu^{11}== (905β19+41415β186777β17+8824β166883β15+19086β14+92939)/3 ( 905 \beta_{19} + 41415 \beta_{18} - 6777 \beta_{17} + 8824 \beta_{16} - 6883 \beta_{15} + 19086 \beta_{14} + \cdots - 92939 ) / 3 Copy content Toggle raw display
ν12\nu^{12}== (807β19+20202β18+36368β1776842β16+64341β15++252117)/3 ( - 807 \beta_{19} + 20202 \beta_{18} + 36368 \beta_{17} - 76842 \beta_{16} + 64341 \beta_{15} + \cdots + 252117 ) / 3 Copy content Toggle raw display
ν13\nu^{13}== (3593β19391307β18+63848β1799385β16+50007β15++813860)/3 ( 3593 \beta_{19} - 391307 \beta_{18} + 63848 \beta_{17} - 99385 \beta_{16} + 50007 \beta_{15} + \cdots + 813860 ) / 3 Copy content Toggle raw display
ν14\nu^{14}== (48300β19190659β18362035β17+662643β16614226β15+2195742)/3 ( - 48300 \beta_{19} - 190659 \beta_{18} - 362035 \beta_{17} + 662643 \beta_{16} - 614226 \beta_{15} + \cdots - 2195742 ) / 3 Copy content Toggle raw display
ν15\nu^{15}== (127295β19+3684204β18601747β17+1060535β16344822β15+7155188)/3 ( - 127295 \beta_{19} + 3684204 \beta_{18} - 601747 \beta_{17} + 1060535 \beta_{16} - 344822 \beta_{15} + \cdots - 7155188 ) / 3 Copy content Toggle raw display
ν16\nu^{16}== 298764β19+601045β18+1178229β171916161β16+1944809β15++6413313 298764 \beta_{19} + 601045 \beta_{18} + 1178229 \beta_{17} - 1916161 \beta_{16} + 1944809 \beta_{15} + \cdots + 6413313 Copy content Toggle raw display
ν17\nu^{17}== (1921470β1934585536β18+5661183β1710930767β16+2215845β15++63174532)/3 ( 1921470 \beta_{19} - 34585536 \beta_{18} + 5661183 \beta_{17} - 10930767 \beta_{16} + 2215845 \beta_{15} + \cdots + 63174532 ) / 3 Copy content Toggle raw display
ν18\nu^{18}== (11888013β1917024050β1834095180β17+50134172β16+169459091)/3 ( - 11888013 \beta_{19} - 17024050 \beta_{18} - 34095180 \beta_{17} + 50134172 \beta_{16} + \cdots - 169459091 ) / 3 Copy content Toggle raw display
ν19\nu^{19}== (23675603β19+323858923β1853135503β17+109997394β16+560117636)/3 ( - 23675603 \beta_{19} + 323858923 \beta_{18} - 53135503 \beta_{17} + 109997394 \beta_{16} + \cdots - 560117636 ) / 3 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/666Z)×\left(\mathbb{Z}/666\mathbb{Z}\right)^\times.

nn 371371 631631
χ(n)\chi(n) 1+β11-1 + \beta_{11} 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
223.1
0.531449i
3.03729i
0.519589i
1.94427i
0.832956i
2.82646i
1.35695i
0.340848i
1.01469i
1.66508i
0.531449i
3.03729i
0.519589i
1.94427i
0.832956i
2.82646i
1.35695i
0.340848i
1.01469i
1.66508i
−0.500000 + 0.866025i −1.70319 + 0.314889i −0.500000 0.866025i 1.66931 + 2.89132i 0.578891 1.63245i −0.0979808 + 0.169708i 1.00000 2.80169 1.07263i −3.33861
223.2 −0.500000 + 0.866025i −1.51552 + 0.838574i −0.500000 0.866025i −1.84524 3.19605i 0.0315329 1.73176i −0.269564 + 0.466898i 1.00000 1.59359 2.54175i 3.69049
223.3 −0.500000 + 0.866025i −1.24741 1.20166i −0.500000 0.866025i −0.716775 1.24149i 1.66437 0.479458i −0.348992 + 0.604472i 1.00000 0.112048 + 2.99791i 1.43355
223.4 −0.500000 + 0.866025i −0.524756 + 1.65065i −0.500000 0.866025i 1.73836 + 3.01093i −1.16712 1.27977i −2.36295 + 4.09274i 1.00000 −2.44926 1.73237i −3.47672
223.5 −0.500000 + 0.866025i −0.120566 1.72785i −0.500000 0.866025i 0.181659 + 0.314643i 1.55664 + 0.759512i 2.51911 4.36323i 1.00000 −2.97093 + 0.416639i −0.363318
223.6 −0.500000 + 0.866025i 0.688178 1.58947i −0.500000 0.866025i −1.64139 2.84297i 1.03243 + 1.39071i 1.56646 2.71318i 1.00000 −2.05282 2.18768i 3.28277
223.7 −0.500000 + 0.866025i 0.695998 1.58606i −0.500000 0.866025i −0.0369337 0.0639710i 1.02557 + 1.39578i −2.33901 + 4.05129i 1.00000 −2.03117 2.20779i 0.0738674
223.8 −0.500000 + 0.866025i 1.41345 + 1.00108i −0.500000 0.866025i −1.74561 3.02349i −1.57368 + 0.723546i −1.43053 + 2.47776i 1.00000 0.995687 + 2.82995i 3.49123
223.9 −0.500000 + 0.866025i 1.58644 + 0.695127i −0.500000 0.866025i 0.474737 + 0.822268i −1.39522 + 1.02634i 2.02158 3.50148i 1.00000 2.03360 + 2.20556i −0.949474
223.10 −0.500000 + 0.866025i 1.72736 0.127329i −0.500000 0.866025i 1.42189 + 2.46278i −0.753412 + 1.55961i 0.241881 0.418950i 1.00000 2.96757 0.439888i −2.84378
445.1 −0.500000 0.866025i −1.70319 0.314889i −0.500000 + 0.866025i 1.66931 2.89132i 0.578891 + 1.63245i −0.0979808 0.169708i 1.00000 2.80169 + 1.07263i −3.33861
445.2 −0.500000 0.866025i −1.51552 0.838574i −0.500000 + 0.866025i −1.84524 + 3.19605i 0.0315329 + 1.73176i −0.269564 0.466898i 1.00000 1.59359 + 2.54175i 3.69049
445.3 −0.500000 0.866025i −1.24741 + 1.20166i −0.500000 + 0.866025i −0.716775 + 1.24149i 1.66437 + 0.479458i −0.348992 0.604472i 1.00000 0.112048 2.99791i 1.43355
445.4 −0.500000 0.866025i −0.524756 1.65065i −0.500000 + 0.866025i 1.73836 3.01093i −1.16712 + 1.27977i −2.36295 4.09274i 1.00000 −2.44926 + 1.73237i −3.47672
445.5 −0.500000 0.866025i −0.120566 + 1.72785i −0.500000 + 0.866025i 0.181659 0.314643i 1.55664 0.759512i 2.51911 + 4.36323i 1.00000 −2.97093 0.416639i −0.363318
445.6 −0.500000 0.866025i 0.688178 + 1.58947i −0.500000 + 0.866025i −1.64139 + 2.84297i 1.03243 1.39071i 1.56646 + 2.71318i 1.00000 −2.05282 + 2.18768i 3.28277
445.7 −0.500000 0.866025i 0.695998 + 1.58606i −0.500000 + 0.866025i −0.0369337 + 0.0639710i 1.02557 1.39578i −2.33901 4.05129i 1.00000 −2.03117 + 2.20779i 0.0738674
445.8 −0.500000 0.866025i 1.41345 1.00108i −0.500000 + 0.866025i −1.74561 + 3.02349i −1.57368 0.723546i −1.43053 2.47776i 1.00000 0.995687 2.82995i 3.49123
445.9 −0.500000 0.866025i 1.58644 0.695127i −0.500000 + 0.866025i 0.474737 0.822268i −1.39522 1.02634i 2.02158 + 3.50148i 1.00000 2.03360 2.20556i −0.949474
445.10 −0.500000 0.866025i 1.72736 + 0.127329i −0.500000 + 0.866025i 1.42189 2.46278i −0.753412 1.55961i 0.241881 + 0.418950i 1.00000 2.96757 + 0.439888i −2.84378
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 223.10
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
9.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 666.2.e.e 20
3.b odd 2 1 1998.2.e.e 20
9.c even 3 1 inner 666.2.e.e 20
9.c even 3 1 5994.2.a.bb 10
9.d odd 6 1 1998.2.e.e 20
9.d odd 6 1 5994.2.a.ba 10
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
666.2.e.e 20 1.a even 1 1 trivial
666.2.e.e 20 9.c even 3 1 inner
1998.2.e.e 20 3.b odd 2 1
1998.2.e.e 20 9.d odd 6 1
5994.2.a.ba 10 9.d odd 6 1
5994.2.a.bb 10 9.c even 3 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T520+T519+36T518+17T517+827T516+258T515+11404T514++2601 T_{5}^{20} + T_{5}^{19} + 36 T_{5}^{18} + 17 T_{5}^{17} + 827 T_{5}^{16} + 258 T_{5}^{15} + 11404 T_{5}^{14} + \cdots + 2601 acting on S2new(666,[χ])S_{2}^{\mathrm{new}}(666, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T2+T+1)10 (T^{2} + T + 1)^{10} Copy content Toggle raw display
33 T202T19++59049 T^{20} - 2 T^{19} + \cdots + 59049 Copy content Toggle raw display
55 T20+T19++2601 T^{20} + T^{19} + \cdots + 2601 Copy content Toggle raw display
77 T20+T19++20736 T^{20} + T^{19} + \cdots + 20736 Copy content Toggle raw display
1111 T20+3T19++25391521 T^{20} + 3 T^{19} + \cdots + 25391521 Copy content Toggle raw display
1313 T20+12T19++28561 T^{20} + 12 T^{19} + \cdots + 28561 Copy content Toggle raw display
1717 (T1012T9++769872)2 (T^{10} - 12 T^{9} + \cdots + 769872)^{2} Copy content Toggle raw display
1919 (T1024T9++7248)2 (T^{10} - 24 T^{9} + \cdots + 7248)^{2} Copy content Toggle raw display
2323 T20++1675837969 T^{20} + \cdots + 1675837969 Copy content Toggle raw display
2929 T20++64892977081 T^{20} + \cdots + 64892977081 Copy content Toggle raw display
3131 T20++5236596066321 T^{20} + \cdots + 5236596066321 Copy content Toggle raw display
3737 (T+1)20 (T + 1)^{20} Copy content Toggle raw display
4141 T20++11609416009 T^{20} + \cdots + 11609416009 Copy content Toggle raw display
4343 T20++115915735296 T^{20} + \cdots + 115915735296 Copy content Toggle raw display
4747 T20++102012262412544 T^{20} + \cdots + 102012262412544 Copy content Toggle raw display
5353 (T10+10T9++1011376)2 (T^{10} + 10 T^{9} + \cdots + 1011376)^{2} Copy content Toggle raw display
5959 T20++197916277065984 T^{20} + \cdots + 197916277065984 Copy content Toggle raw display
6161 T20++1367774691361 T^{20} + \cdots + 1367774691361 Copy content Toggle raw display
6767 T20++1626438551761 T^{20} + \cdots + 1626438551761 Copy content Toggle raw display
7171 (T1015T9++11950032)2 (T^{10} - 15 T^{9} + \cdots + 11950032)^{2} Copy content Toggle raw display
7373 (T103T9+15936)2 (T^{10} - 3 T^{9} + \cdots - 15936)^{2} Copy content Toggle raw display
7979 T20++14 ⁣ ⁣61 T^{20} + \cdots + 14\!\cdots\!61 Copy content Toggle raw display
8383 T20++48 ⁣ ⁣69 T^{20} + \cdots + 48\!\cdots\!69 Copy content Toggle raw display
8989 (T1021T9+3312)2 (T^{10} - 21 T^{9} + \cdots - 3312)^{2} Copy content Toggle raw display
9797 T20++32 ⁣ ⁣16 T^{20} + \cdots + 32\!\cdots\!16 Copy content Toggle raw display
show more
show less