Newspace parameters
Level: | |||
Weight: | |||
Character orbit: | 666.e (of order , degree , minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Relative dimension: | over |
Coefficient field: | |
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | yes |
Sato-Tate group: |
-expansion
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
Label | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
223.1 |
|
−0.500000 | + | 0.866025i | −1.70319 | + | 0.314889i | −0.500000 | − | 0.866025i | 1.66931 | + | 2.89132i | 0.578891 | − | 1.63245i | −0.0979808 | + | 0.169708i | 1.00000 | 2.80169 | − | 1.07263i | −3.33861 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
223.2 | −0.500000 | + | 0.866025i | −1.51552 | + | 0.838574i | −0.500000 | − | 0.866025i | −1.84524 | − | 3.19605i | 0.0315329 | − | 1.73176i | −0.269564 | + | 0.466898i | 1.00000 | 1.59359 | − | 2.54175i | 3.69049 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
223.3 | −0.500000 | + | 0.866025i | −1.24741 | − | 1.20166i | −0.500000 | − | 0.866025i | −0.716775 | − | 1.24149i | 1.66437 | − | 0.479458i | −0.348992 | + | 0.604472i | 1.00000 | 0.112048 | + | 2.99791i | 1.43355 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
223.4 | −0.500000 | + | 0.866025i | −0.524756 | + | 1.65065i | −0.500000 | − | 0.866025i | 1.73836 | + | 3.01093i | −1.16712 | − | 1.27977i | −2.36295 | + | 4.09274i | 1.00000 | −2.44926 | − | 1.73237i | −3.47672 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
223.5 | −0.500000 | + | 0.866025i | −0.120566 | − | 1.72785i | −0.500000 | − | 0.866025i | 0.181659 | + | 0.314643i | 1.55664 | + | 0.759512i | 2.51911 | − | 4.36323i | 1.00000 | −2.97093 | + | 0.416639i | −0.363318 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
223.6 | −0.500000 | + | 0.866025i | 0.688178 | − | 1.58947i | −0.500000 | − | 0.866025i | −1.64139 | − | 2.84297i | 1.03243 | + | 1.39071i | 1.56646 | − | 2.71318i | 1.00000 | −2.05282 | − | 2.18768i | 3.28277 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
223.7 | −0.500000 | + | 0.866025i | 0.695998 | − | 1.58606i | −0.500000 | − | 0.866025i | −0.0369337 | − | 0.0639710i | 1.02557 | + | 1.39578i | −2.33901 | + | 4.05129i | 1.00000 | −2.03117 | − | 2.20779i | 0.0738674 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
223.8 | −0.500000 | + | 0.866025i | 1.41345 | + | 1.00108i | −0.500000 | − | 0.866025i | −1.74561 | − | 3.02349i | −1.57368 | + | 0.723546i | −1.43053 | + | 2.47776i | 1.00000 | 0.995687 | + | 2.82995i | 3.49123 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
223.9 | −0.500000 | + | 0.866025i | 1.58644 | + | 0.695127i | −0.500000 | − | 0.866025i | 0.474737 | + | 0.822268i | −1.39522 | + | 1.02634i | 2.02158 | − | 3.50148i | 1.00000 | 2.03360 | + | 2.20556i | −0.949474 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
223.10 | −0.500000 | + | 0.866025i | 1.72736 | − | 0.127329i | −0.500000 | − | 0.866025i | 1.42189 | + | 2.46278i | −0.753412 | + | 1.55961i | 0.241881 | − | 0.418950i | 1.00000 | 2.96757 | − | 0.439888i | −2.84378 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
445.1 | −0.500000 | − | 0.866025i | −1.70319 | − | 0.314889i | −0.500000 | + | 0.866025i | 1.66931 | − | 2.89132i | 0.578891 | + | 1.63245i | −0.0979808 | − | 0.169708i | 1.00000 | 2.80169 | + | 1.07263i | −3.33861 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
445.2 | −0.500000 | − | 0.866025i | −1.51552 | − | 0.838574i | −0.500000 | + | 0.866025i | −1.84524 | + | 3.19605i | 0.0315329 | + | 1.73176i | −0.269564 | − | 0.466898i | 1.00000 | 1.59359 | + | 2.54175i | 3.69049 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
445.3 | −0.500000 | − | 0.866025i | −1.24741 | + | 1.20166i | −0.500000 | + | 0.866025i | −0.716775 | + | 1.24149i | 1.66437 | + | 0.479458i | −0.348992 | − | 0.604472i | 1.00000 | 0.112048 | − | 2.99791i | 1.43355 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
445.4 | −0.500000 | − | 0.866025i | −0.524756 | − | 1.65065i | −0.500000 | + | 0.866025i | 1.73836 | − | 3.01093i | −1.16712 | + | 1.27977i | −2.36295 | − | 4.09274i | 1.00000 | −2.44926 | + | 1.73237i | −3.47672 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
445.5 | −0.500000 | − | 0.866025i | −0.120566 | + | 1.72785i | −0.500000 | + | 0.866025i | 0.181659 | − | 0.314643i | 1.55664 | − | 0.759512i | 2.51911 | + | 4.36323i | 1.00000 | −2.97093 | − | 0.416639i | −0.363318 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
445.6 | −0.500000 | − | 0.866025i | 0.688178 | + | 1.58947i | −0.500000 | + | 0.866025i | −1.64139 | + | 2.84297i | 1.03243 | − | 1.39071i | 1.56646 | + | 2.71318i | 1.00000 | −2.05282 | + | 2.18768i | 3.28277 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
445.7 | −0.500000 | − | 0.866025i | 0.695998 | + | 1.58606i | −0.500000 | + | 0.866025i | −0.0369337 | + | 0.0639710i | 1.02557 | − | 1.39578i | −2.33901 | − | 4.05129i | 1.00000 | −2.03117 | + | 2.20779i | 0.0738674 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
445.8 | −0.500000 | − | 0.866025i | 1.41345 | − | 1.00108i | −0.500000 | + | 0.866025i | −1.74561 | + | 3.02349i | −1.57368 | − | 0.723546i | −1.43053 | − | 2.47776i | 1.00000 | 0.995687 | − | 2.82995i | 3.49123 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
445.9 | −0.500000 | − | 0.866025i | 1.58644 | − | 0.695127i | −0.500000 | + | 0.866025i | 0.474737 | − | 0.822268i | −1.39522 | − | 1.02634i | 2.02158 | + | 3.50148i | 1.00000 | 2.03360 | − | 2.20556i | −0.949474 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
445.10 | −0.500000 | − | 0.866025i | 1.72736 | + | 0.127329i | −0.500000 | + | 0.866025i | 1.42189 | − | 2.46278i | −0.753412 | − | 1.55961i | 0.241881 | + | 0.418950i | 1.00000 | 2.96757 | + | 0.439888i | −2.84378 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
9.c | even | 3 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 666.2.e.e | ✓ | 20 |
3.b | odd | 2 | 1 | 1998.2.e.e | 20 | ||
9.c | even | 3 | 1 | inner | 666.2.e.e | ✓ | 20 |
9.c | even | 3 | 1 | 5994.2.a.bb | 10 | ||
9.d | odd | 6 | 1 | 1998.2.e.e | 20 | ||
9.d | odd | 6 | 1 | 5994.2.a.ba | 10 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
666.2.e.e | ✓ | 20 | 1.a | even | 1 | 1 | trivial |
666.2.e.e | ✓ | 20 | 9.c | even | 3 | 1 | inner |
1998.2.e.e | 20 | 3.b | odd | 2 | 1 | ||
1998.2.e.e | 20 | 9.d | odd | 6 | 1 | ||
5994.2.a.ba | 10 | 9.d | odd | 6 | 1 | ||
5994.2.a.bb | 10 | 9.c | even | 3 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
acting on .