Properties

Label 5994.2.a.ba
Level $5994$
Weight $2$
Character orbit 5994.a
Self dual yes
Analytic conductor $47.862$
Analytic rank $0$
Dimension $10$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5994,2,Mod(1,5994)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5994, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5994.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 5994 = 2 \cdot 3^{4} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5994.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(47.8623309716\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - 2x^{9} - 26x^{8} + 49x^{7} + 236x^{6} - 420x^{5} - 860x^{4} + 1461x^{3} + 993x^{2} - 1638x + 99 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: no (minimal twist has level 666)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{9}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - q^{2} + q^{4} + \beta_{6} q^{5} - \beta_{9} q^{7} - q^{8} - \beta_{6} q^{10} + (\beta_{5} + \beta_{2}) q^{11} + ( - \beta_{9} - \beta_{6} - \beta_{4} + 1) q^{13} + \beta_{9} q^{14} + q^{16} + (\beta_{7} + \beta_{4} + \beta_{3} + \cdots - 1) q^{17}+ \cdots + (2 \beta_{9} + \beta_{6} + 2 \beta_{4} + \cdots - 3) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - 10 q^{2} + 10 q^{4} - q^{5} + q^{7} - 10 q^{8} + q^{10} - 3 q^{11} + 12 q^{13} - q^{14} + 10 q^{16} - 12 q^{17} + 24 q^{19} - q^{20} + 3 q^{22} - 3 q^{23} + 21 q^{25} - 12 q^{26} + q^{28} - 4 q^{29}+ \cdots - 35 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{10} - 2x^{9} - 26x^{8} + 49x^{7} + 236x^{6} - 420x^{5} - 860x^{4} + 1461x^{3} + 993x^{2} - 1638x + 99 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( 12122 \nu^{9} + 3878 \nu^{8} - 319687 \nu^{7} - 111802 \nu^{6} + 2840680 \nu^{5} + 934458 \nu^{4} + \cdots - 997761 ) / 272073 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( - 26903 \nu^{9} - 4417 \nu^{8} + 686777 \nu^{7} + 167612 \nu^{6} - 5914326 \nu^{5} - 1567558 \nu^{4} + \cdots + 163557 ) / 272073 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( - 41434 \nu^{9} - 836 \nu^{8} + 1069090 \nu^{7} + 114325 \nu^{6} - 9388827 \nu^{5} + \cdots + 2748360 ) / 272073 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( - 47656 \nu^{9} + 1827 \nu^{8} + 1222032 \nu^{7} + 118233 \nu^{6} - 10625383 \nu^{5} + \cdots + 3520176 ) / 272073 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( - 60657 \nu^{9} - 5654 \nu^{8} + 1574170 \nu^{7} + 307810 \nu^{6} - 13868663 \nu^{5} + \cdots + 3609258 ) / 272073 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( - 21496 \nu^{9} - 2373 \nu^{8} + 554947 \nu^{7} + 118506 \nu^{6} - 4849246 \nu^{5} - 1242004 \nu^{4} + \cdots + 672259 ) / 90691 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( - 113902 \nu^{9} - 12498 \nu^{8} + 2951775 \nu^{7} + 629301 \nu^{6} - 25978321 \nu^{5} + \cdots + 3991668 ) / 272073 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( - 53070 \nu^{9} - 3960 \nu^{8} + 1379192 \nu^{7} + 236054 \nu^{6} - 12163529 \nu^{5} + \cdots + 2694093 ) / 90691 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( 163381 \nu^{9} + 810 \nu^{8} - 4214799 \nu^{7} - 530595 \nu^{6} + 36878434 \nu^{5} + 6849019 \nu^{4} + \cdots - 7890852 ) / 272073 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{7} - \beta_{6} - 2\beta_{5} + \beta_{4} - 2\beta _1 - 1 ) / 3 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{8} - \beta_{5} - \beta_{4} - \beta_{3} + \beta_{2} + 3\beta _1 + 17 ) / 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 3\beta_{9} + 2\beta_{8} + 7\beta_{7} - \beta_{6} - 19\beta_{5} + 11\beta_{4} + \beta_{3} - 4\beta_{2} - 11\beta _1 - 6 ) / 3 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( 6\beta_{9} + 14\beta_{8} - \beta_{7} + 4\beta_{6} - 12\beta_{5} - 11\beta_{3} + 8\beta_{2} + 35\beta _1 + 137 ) / 3 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( 42 \beta_{9} + 33 \beta_{8} + 50 \beta_{7} + 34 \beta_{6} - 190 \beta_{5} + 116 \beta_{4} + 6 \beta_{3} + \cdots - 35 ) / 3 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( ( 93 \beta_{9} + 158 \beta_{8} + 66 \beta_{6} - 152 \beta_{5} + 67 \beta_{4} - 125 \beta_{3} + 53 \beta_{2} + \cdots + 1237 ) / 3 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( 480 \beta_{9} + 439 \beta_{8} + 386 \beta_{7} + 568 \beta_{6} - 1961 \beta_{5} + 1195 \beta_{4} + \cdots - 168 ) / 3 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( ( 1092 \beta_{9} + 1711 \beta_{8} + 121 \beta_{7} + 812 \beta_{6} - 1935 \beta_{5} + 1146 \beta_{4} + \cdots + 11752 ) / 3 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( ( 5214 \beta_{9} + 5400 \beta_{8} + 3229 \beta_{7} + 7028 \beta_{6} - 20582 \beta_{5} + 12289 \beta_{4} + \cdots - 163 ) / 3 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0.0630659
−3.14737
2.06486
3.32874
2.05114
3.11329
−2.79044
−1.50682
1.15778
−2.33425
−1.00000 0 1.00000 −3.69049 0 0.539128 −1.00000 0 3.69049
1.2 −1.00000 0 1.00000 −3.49123 0 2.86107 −1.00000 0 3.49123
1.3 −1.00000 0 1.00000 −3.28277 0 −3.13291 −1.00000 0 3.28277
1.4 −1.00000 0 1.00000 −1.43355 0 0.697985 −1.00000 0 1.43355
1.5 −1.00000 0 1.00000 −0.0738674 0 4.67803 −1.00000 0 0.0738674
1.6 −1.00000 0 1.00000 0.363318 0 −5.03822 −1.00000 0 −0.363318
1.7 −1.00000 0 1.00000 0.949474 0 −4.04317 −1.00000 0 −0.949474
1.8 −1.00000 0 1.00000 2.84378 0 −0.483762 −1.00000 0 −2.84378
1.9 −1.00000 0 1.00000 3.33861 0 0.195962 −1.00000 0 −3.33861
1.10 −1.00000 0 1.00000 3.47672 0 4.72589 −1.00000 0 −3.47672
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.10
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( -1 \)
\(37\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 5994.2.a.ba 10
3.b odd 2 1 5994.2.a.bb 10
9.c even 3 2 1998.2.e.e 20
9.d odd 6 2 666.2.e.e 20
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
666.2.e.e 20 9.d odd 6 2
1998.2.e.e 20 9.c even 3 2
5994.2.a.ba 10 1.a even 1 1 trivial
5994.2.a.bb 10 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(5994))\):

\( T_{5}^{10} + T_{5}^{9} - 35 T_{5}^{8} - 26 T_{5}^{7} + 424 T_{5}^{6} + 196 T_{5}^{5} - 1958 T_{5}^{4} + \cdots - 51 \) Copy content Toggle raw display
\( T_{11}^{10} + 3 T_{11}^{9} - 67 T_{11}^{8} - 204 T_{11}^{7} + 1466 T_{11}^{6} + 4343 T_{11}^{5} + \cdots - 5039 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 1)^{10} \) Copy content Toggle raw display
$3$ \( T^{10} \) Copy content Toggle raw display
$5$ \( T^{10} + T^{9} + \cdots - 51 \) Copy content Toggle raw display
$7$ \( T^{10} - T^{9} + \cdots + 144 \) Copy content Toggle raw display
$11$ \( T^{10} + 3 T^{9} + \cdots - 5039 \) Copy content Toggle raw display
$13$ \( T^{10} - 12 T^{9} + \cdots + 169 \) Copy content Toggle raw display
$17$ \( T^{10} + 12 T^{9} + \cdots + 769872 \) Copy content Toggle raw display
$19$ \( T^{10} - 24 T^{9} + \cdots + 7248 \) Copy content Toggle raw display
$23$ \( T^{10} + 3 T^{9} + \cdots - 40937 \) Copy content Toggle raw display
$29$ \( T^{10} + 4 T^{9} + \cdots - 254741 \) Copy content Toggle raw display
$31$ \( T^{10} - 11 T^{9} + \cdots + 2288361 \) Copy content Toggle raw display
$37$ \( (T + 1)^{10} \) Copy content Toggle raw display
$41$ \( T^{10} - 3 T^{9} + \cdots - 107747 \) Copy content Toggle raw display
$43$ \( T^{10} - 6 T^{9} + \cdots + 340464 \) Copy content Toggle raw display
$47$ \( T^{10} + 8 T^{9} + \cdots - 10100112 \) Copy content Toggle raw display
$53$ \( T^{10} - 10 T^{9} + \cdots + 1011376 \) Copy content Toggle raw display
$59$ \( T^{10} + 10 T^{9} + \cdots + 14068272 \) Copy content Toggle raw display
$61$ \( T^{10} - 2 T^{9} + \cdots - 1169519 \) Copy content Toggle raw display
$67$ \( T^{10} - 7 T^{9} + \cdots + 1275319 \) Copy content Toggle raw display
$71$ \( T^{10} + 15 T^{9} + \cdots + 11950032 \) Copy content Toggle raw display
$73$ \( T^{10} - 3 T^{9} + \cdots - 15936 \) Copy content Toggle raw display
$79$ \( T^{10} + \cdots - 118547631 \) Copy content Toggle raw display
$83$ \( T^{10} - 23 T^{9} + \cdots - 69498213 \) Copy content Toggle raw display
$89$ \( T^{10} + 21 T^{9} + \cdots - 3312 \) Copy content Toggle raw display
$97$ \( T^{10} + \cdots + 18102071296 \) Copy content Toggle raw display
show more
show less