L(s) = 1 | + (−0.5 − 0.866i)2-s + (1.41 − 1.00i)3-s + (−0.499 + 0.866i)4-s + (−1.74 + 3.02i)5-s + (−1.57 − 0.723i)6-s + (−1.43 − 2.47i)7-s + 0.999·8-s + (0.995 − 2.82i)9-s + 3.49·10-s + (2.71 + 4.70i)11-s + (0.160 + 1.72i)12-s + (−1.81 + 3.14i)13-s + (−1.43 + 2.47i)14-s + (0.559 + 6.02i)15-s + (−0.5 − 0.866i)16-s + 4.84·17-s + ⋯ |
L(s) = 1 | + (−0.353 − 0.612i)2-s + (0.816 − 0.577i)3-s + (−0.249 + 0.433i)4-s + (−0.780 + 1.35i)5-s + (−0.642 − 0.295i)6-s + (−0.540 − 0.936i)7-s + 0.353·8-s + (0.331 − 0.943i)9-s + 1.10·10-s + (0.819 + 1.41i)11-s + (0.0462 + 0.497i)12-s + (−0.503 + 0.871i)13-s + (−0.382 + 0.662i)14-s + (0.144 + 1.55i)15-s + (−0.125 − 0.216i)16-s + 1.17·17-s + ⋯ |
Λ(s)=(=(666s/2ΓC(s)L(s)(0.986+0.163i)Λ(2−s)
Λ(s)=(=(666s/2ΓC(s+1/2)L(s)(0.986+0.163i)Λ(1−s)
Degree: |
2 |
Conductor: |
666
= 2⋅32⋅37
|
Sign: |
0.986+0.163i
|
Analytic conductor: |
5.31803 |
Root analytic conductor: |
2.30608 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ666(445,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 666, ( :1/2), 0.986+0.163i)
|
Particular Values
L(1) |
≈ |
1.39713−0.114667i |
L(21) |
≈ |
1.39713−0.114667i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.5+0.866i)T |
| 3 | 1+(−1.41+1.00i)T |
| 37 | 1+T |
good | 5 | 1+(1.74−3.02i)T+(−2.5−4.33i)T2 |
| 7 | 1+(1.43+2.47i)T+(−3.5+6.06i)T2 |
| 11 | 1+(−2.71−4.70i)T+(−5.5+9.52i)T2 |
| 13 | 1+(1.81−3.14i)T+(−6.5−11.2i)T2 |
| 17 | 1−4.84T+17T2 |
| 19 | 1−7.31T+19T2 |
| 23 | 1+(−3.34+5.79i)T+(−11.5−19.9i)T2 |
| 29 | 1+(−2.90−5.03i)T+(−14.5+25.1i)T2 |
| 31 | 1+(4.48−7.76i)T+(−15.5−26.8i)T2 |
| 41 | 1+(−0.330+0.571i)T+(−20.5−35.5i)T2 |
| 43 | 1+(−2.88−4.99i)T+(−21.5+37.2i)T2 |
| 47 | 1+(−3.70−6.41i)T+(−23.5+40.7i)T2 |
| 53 | 1−3.88T+53T2 |
| 59 | 1+(0.782−1.35i)T+(−29.5−51.0i)T2 |
| 61 | 1+(4.24+7.35i)T+(−30.5+52.8i)T2 |
| 67 | 1+(0.185−0.321i)T+(−33.5−58.0i)T2 |
| 71 | 1+0.584T+71T2 |
| 73 | 1+11.9T+73T2 |
| 79 | 1+(−2.06−3.58i)T+(−39.5+68.4i)T2 |
| 83 | 1+(1.42+2.47i)T+(−41.5+71.8i)T2 |
| 89 | 1+3.31T+89T2 |
| 97 | 1+(6.41+11.1i)T+(−48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.31058625985739434785911515318, −9.771517131721641902239574279034, −8.924394605085166162959759845176, −7.51130822825901969318669177747, −7.22206923908932397745308149480, −6.71280922001146503796294053942, −4.46872965591701100703466060216, −3.49096901445870665068090421653, −2.87625005222721337765939434940, −1.34883856785028758844248695682,
0.932013565805815905743477714896, 3.07792127890063403872553009489, 3.92579193300912308887585462947, 5.39786468528094352262762924403, 5.61359858826853520372939162946, 7.53289193637281685031272502078, 7.983535597643077156388644626594, 9.006763274266662422581981555070, 9.189936829334496374921773100558, 10.10512761828052494880903234910