L(s) = 1 | + (−0.866 + 0.5i)2-s + (0.499 − 0.866i)4-s + (−0.866 − 0.5i)5-s + (0.633 − 1.09i)7-s + 0.999i·8-s + 0.999·10-s − 4.73·11-s + (4.73 + 2.73i)13-s + 1.26i·14-s + (−0.5 − 0.866i)16-s + (6.69 − 3.86i)17-s + (−5.83 − 3.36i)19-s + (−0.866 + 0.499i)20-s + (4.09 − 2.36i)22-s − 1.46i·23-s + ⋯ |
L(s) = 1 | + (−0.612 + 0.353i)2-s + (0.249 − 0.433i)4-s + (−0.387 − 0.223i)5-s + (0.239 − 0.415i)7-s + 0.353i·8-s + 0.316·10-s − 1.42·11-s + (1.31 + 0.757i)13-s + 0.338i·14-s + (−0.125 − 0.216i)16-s + (1.62 − 0.937i)17-s + (−1.33 − 0.772i)19-s + (−0.193 + 0.111i)20-s + (0.873 − 0.504i)22-s − 0.305i·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 666 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.367 + 0.929i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 666 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.367 + 0.929i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.687787 - 0.467668i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.687787 - 0.467668i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.866 - 0.5i)T \) |
| 3 | \( 1 \) |
| 37 | \( 1 + (6.06 - 0.5i)T \) |
good | 5 | \( 1 + (0.866 + 0.5i)T + (2.5 + 4.33i)T^{2} \) |
| 7 | \( 1 + (-0.633 + 1.09i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + 4.73T + 11T^{2} \) |
| 13 | \( 1 + (-4.73 - 2.73i)T + (6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (-6.69 + 3.86i)T + (8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (5.83 + 3.36i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + 1.46iT - 23T^{2} \) |
| 29 | \( 1 - 0.464iT - 29T^{2} \) |
| 31 | \( 1 + 6.19iT - 31T^{2} \) |
| 41 | \( 1 + (-4.23 + 7.33i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + 5.26iT - 43T^{2} \) |
| 47 | \( 1 - 5.26T + 47T^{2} \) |
| 53 | \( 1 + (4.46 + 7.73i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-6 + 3.46i)T + (29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (7.33 + 4.23i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-1.83 + 3.16i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (2.63 - 4.56i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 - 12.3T + 73T^{2} \) |
| 79 | \( 1 + (-5.36 - 3.09i)T + (39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (3.26 + 5.66i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + (7.5 - 4.33i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + 1.33iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.44564126795321333798997209030, −9.393481573054499433930520211212, −8.458777884376278679024243775286, −7.86520830918177183790695438092, −7.01680163453890182028361157901, −5.93711951590814295462850842329, −4.95057923473085395294709247875, −3.81357603511856991176926327972, −2.28407665196525760525246953201, −0.57061564323279276290378339986,
1.48086640914669884695660055302, 2.95859953069710348367116392654, 3.82567464463763001301904548577, 5.40325040303042630695565998647, 6.14259278086528115312273468744, 7.62488358279123191196828655305, 8.095658651653836932364881818490, 8.764961462413206188894536689844, 10.13241743961508650058624511859, 10.56283540594214863763072051322