L(s) = 1 | + (−0.866 + 0.5i)2-s + (0.499 − 0.866i)4-s + (−0.866 − 0.5i)5-s + (0.633 − 1.09i)7-s + 0.999i·8-s + 0.999·10-s − 4.73·11-s + (4.73 + 2.73i)13-s + 1.26i·14-s + (−0.5 − 0.866i)16-s + (6.69 − 3.86i)17-s + (−5.83 − 3.36i)19-s + (−0.866 + 0.499i)20-s + (4.09 − 2.36i)22-s − 1.46i·23-s + ⋯ |
L(s) = 1 | + (−0.612 + 0.353i)2-s + (0.249 − 0.433i)4-s + (−0.387 − 0.223i)5-s + (0.239 − 0.415i)7-s + 0.353i·8-s + 0.316·10-s − 1.42·11-s + (1.31 + 0.757i)13-s + 0.338i·14-s + (−0.125 − 0.216i)16-s + (1.62 − 0.937i)17-s + (−1.33 − 0.772i)19-s + (−0.193 + 0.111i)20-s + (0.873 − 0.504i)22-s − 0.305i·23-s + ⋯ |
Λ(s)=(=(666s/2ΓC(s)L(s)(0.367+0.929i)Λ(2−s)
Λ(s)=(=(666s/2ΓC(s+1/2)L(s)(0.367+0.929i)Λ(1−s)
Degree: |
2 |
Conductor: |
666
= 2⋅32⋅37
|
Sign: |
0.367+0.929i
|
Analytic conductor: |
5.31803 |
Root analytic conductor: |
2.30608 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ666(307,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 666, ( :1/2), 0.367+0.929i)
|
Particular Values
L(1) |
≈ |
0.687787−0.467668i |
L(21) |
≈ |
0.687787−0.467668i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.866−0.5i)T |
| 3 | 1 |
| 37 | 1+(6.06−0.5i)T |
good | 5 | 1+(0.866+0.5i)T+(2.5+4.33i)T2 |
| 7 | 1+(−0.633+1.09i)T+(−3.5−6.06i)T2 |
| 11 | 1+4.73T+11T2 |
| 13 | 1+(−4.73−2.73i)T+(6.5+11.2i)T2 |
| 17 | 1+(−6.69+3.86i)T+(8.5−14.7i)T2 |
| 19 | 1+(5.83+3.36i)T+(9.5+16.4i)T2 |
| 23 | 1+1.46iT−23T2 |
| 29 | 1−0.464iT−29T2 |
| 31 | 1+6.19iT−31T2 |
| 41 | 1+(−4.23+7.33i)T+(−20.5−35.5i)T2 |
| 43 | 1+5.26iT−43T2 |
| 47 | 1−5.26T+47T2 |
| 53 | 1+(4.46+7.73i)T+(−26.5+45.8i)T2 |
| 59 | 1+(−6+3.46i)T+(29.5−51.0i)T2 |
| 61 | 1+(7.33+4.23i)T+(30.5+52.8i)T2 |
| 67 | 1+(−1.83+3.16i)T+(−33.5−58.0i)T2 |
| 71 | 1+(2.63−4.56i)T+(−35.5−61.4i)T2 |
| 73 | 1−12.3T+73T2 |
| 79 | 1+(−5.36−3.09i)T+(39.5+68.4i)T2 |
| 83 | 1+(3.26+5.66i)T+(−41.5+71.8i)T2 |
| 89 | 1+(7.5−4.33i)T+(44.5−77.0i)T2 |
| 97 | 1+1.33iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.44564126795321333798997209030, −9.393481573054499433930520211212, −8.458777884376278679024243775286, −7.86520830918177183790695438092, −7.01680163453890182028361157901, −5.93711951590814295462850842329, −4.95057923473085395294709247875, −3.81357603511856991176926327972, −2.28407665196525760525246953201, −0.57061564323279276290378339986,
1.48086640914669884695660055302, 2.95859953069710348367116392654, 3.82567464463763001301904548577, 5.40325040303042630695565998647, 6.14259278086528115312273468744, 7.62488358279123191196828655305, 8.095658651653836932364881818490, 8.764961462413206188894536689844, 10.13241743961508650058624511859, 10.56283540594214863763072051322