Properties

Label 666.2.s.d
Level 666666
Weight 22
Character orbit 666.s
Analytic conductor 5.3185.318
Analytic rank 00
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [666,2,Mod(307,666)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(666, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("666.307");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 666=23237 666 = 2 \cdot 3^{2} \cdot 37
Weight: k k == 2 2
Character orbit: [χ][\chi] == 666.s (of order 66, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 5.318036774625.31803677462
Analytic rank: 00
Dimension: 44
Relative dimension: 22 over Q(ζ6)\Q(\zeta_{6})
Coefficient field: Q(ζ12)\Q(\zeta_{12})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4x2+1 x^{4} - x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 222)
Sato-Tate group: SU(2)[C6]\mathrm{SU}(2)[C_{6}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a primitive root of unity ζ12\zeta_{12}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+ζ12q2+ζ122q4+(ζ123+ζ12)q5+(ζ123+3ζ122+ζ12)q7+ζ123q8+q10+(ζ123+2ζ123)q11++(5ζ123+6ζ122+12)q98+O(q100) q + \zeta_{12} q^{2} + \zeta_{12}^{2} q^{4} + ( - \zeta_{12}^{3} + \zeta_{12}) q^{5} + (\zeta_{12}^{3} + 3 \zeta_{12}^{2} + \zeta_{12}) q^{7} + \zeta_{12}^{3} q^{8} + q^{10} + ( - \zeta_{12}^{3} + 2 \zeta_{12} - 3) q^{11}+ \cdots + (5 \zeta_{12}^{3} + 6 \zeta_{12}^{2} + \cdots - 12) q^{98}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q+2q4+6q7+4q1012q11+12q132q16+6q176q19+6q228q258q266q2812q34+6q35+20q38+2q40+10q416q44+36q98+O(q100) 4 q + 2 q^{4} + 6 q^{7} + 4 q^{10} - 12 q^{11} + 12 q^{13} - 2 q^{16} + 6 q^{17} - 6 q^{19} + 6 q^{22} - 8 q^{25} - 8 q^{26} - 6 q^{28} - 12 q^{34} + 6 q^{35} + 20 q^{38} + 2 q^{40} + 10 q^{41} - 6 q^{44}+ \cdots - 36 q^{98}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/666Z)×\left(\mathbb{Z}/666\mathbb{Z}\right)^\times.

nn 371371 631631
χ(n)\chi(n) 11 ζ122\zeta_{12}^{2}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
307.1
−0.866025 + 0.500000i
0.866025 0.500000i
−0.866025 0.500000i
0.866025 + 0.500000i
−0.866025 + 0.500000i 0 0.500000 0.866025i −0.866025 0.500000i 0 0.633975 1.09808i 1.00000i 0 1.00000
307.2 0.866025 0.500000i 0 0.500000 0.866025i 0.866025 + 0.500000i 0 2.36603 4.09808i 1.00000i 0 1.00000
397.1 −0.866025 0.500000i 0 0.500000 + 0.866025i −0.866025 + 0.500000i 0 0.633975 + 1.09808i 1.00000i 0 1.00000
397.2 0.866025 + 0.500000i 0 0.500000 + 0.866025i 0.866025 0.500000i 0 2.36603 + 4.09808i 1.00000i 0 1.00000
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
37.e even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 666.2.s.d 4
3.b odd 2 1 222.2.j.a 4
12.b even 2 1 1776.2.bz.e 4
37.e even 6 1 inner 666.2.s.d 4
111.h odd 6 1 222.2.j.a 4
111.m even 12 1 8214.2.a.l 2
111.m even 12 1 8214.2.a.p 2
444.p even 6 1 1776.2.bz.e 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
222.2.j.a 4 3.b odd 2 1
222.2.j.a 4 111.h odd 6 1
666.2.s.d 4 1.a even 1 1 trivial
666.2.s.d 4 37.e even 6 1 inner
1776.2.bz.e 4 12.b even 2 1
1776.2.bz.e 4 444.p even 6 1
8214.2.a.l 2 111.m even 12 1
8214.2.a.p 2 111.m even 12 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T54T52+1 T_{5}^{4} - T_{5}^{2} + 1 acting on S2new(666,[χ])S_{2}^{\mathrm{new}}(666, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4T2+1 T^{4} - T^{2} + 1 Copy content Toggle raw display
33 T4 T^{4} Copy content Toggle raw display
55 T4T2+1 T^{4} - T^{2} + 1 Copy content Toggle raw display
77 T46T3++36 T^{4} - 6 T^{3} + \cdots + 36 Copy content Toggle raw display
1111 (T2+6T+6)2 (T^{2} + 6 T + 6)^{2} Copy content Toggle raw display
1313 T412T3++64 T^{4} - 12 T^{3} + \cdots + 64 Copy content Toggle raw display
1717 T46T3++1089 T^{4} - 6 T^{3} + \cdots + 1089 Copy content Toggle raw display
1919 T4+6T3++484 T^{4} + 6 T^{3} + \cdots + 484 Copy content Toggle raw display
2323 T4+32T2+64 T^{4} + 32T^{2} + 64 Copy content Toggle raw display
2929 T4+42T2+9 T^{4} + 42T^{2} + 9 Copy content Toggle raw display
3131 T4+56T2+676 T^{4} + 56T^{2} + 676 Copy content Toggle raw display
3737 T473T2+1369 T^{4} - 73T^{2} + 1369 Copy content Toggle raw display
4141 T410T3++169 T^{4} - 10 T^{3} + \cdots + 169 Copy content Toggle raw display
4343 T4+104T2+2116 T^{4} + 104T^{2} + 2116 Copy content Toggle raw display
4747 (T214T+46)2 (T^{2} - 14 T + 46)^{2} Copy content Toggle raw display
5353 T4+4T3++1936 T^{4} + 4 T^{3} + \cdots + 1936 Copy content Toggle raw display
5959 (T212T+48)2 (T^{2} - 12 T + 48)^{2} Copy content Toggle raw display
6161 T4+12T3++169 T^{4} + 12 T^{3} + \cdots + 169 Copy content Toggle raw display
6767 T4+10T3++2500 T^{4} + 10 T^{3} + \cdots + 2500 Copy content Toggle raw display
7171 T4+14T3++2116 T^{4} + 14 T^{3} + \cdots + 2116 Copy content Toggle raw display
7373 (T24T104)2 (T^{2} - 4 T - 104)^{2} Copy content Toggle raw display
7979 T418T3++676 T^{4} - 18 T^{3} + \cdots + 676 Copy content Toggle raw display
8383 T4+20T3++7744 T^{4} + 20 T^{3} + \cdots + 7744 Copy content Toggle raw display
8989 (T2+15T+75)2 (T^{2} + 15 T + 75)^{2} Copy content Toggle raw display
9797 T4+350T2+625 T^{4} + 350T^{2} + 625 Copy content Toggle raw display
show more
show less