L(s) = 1 | + (−1.66 + 0.493i)3-s + (1.09 + 1.89i)5-s + (0.451 − 2.60i)7-s + (2.51 − 1.63i)9-s + (1.45 + 0.837i)11-s − 1.56i·13-s + (−2.74 − 2.60i)15-s + (−0.278 − 0.160i)17-s + (−2.87 − 4.97i)19-s + (0.537 + 4.55i)21-s + (3.26 + 5.65i)23-s + (0.114 − 0.198i)25-s + (−3.36 + 3.96i)27-s + 7.04·29-s + (7.76 + 4.48i)31-s + ⋯ |
L(s) = 1 | + (−0.958 + 0.285i)3-s + (0.488 + 0.845i)5-s + (0.170 − 0.985i)7-s + (0.837 − 0.546i)9-s + (0.437 + 0.252i)11-s − 0.432i·13-s + (−0.709 − 0.671i)15-s + (−0.0676 − 0.0390i)17-s + (−0.659 − 1.14i)19-s + (0.117 + 0.993i)21-s + (0.681 + 1.17i)23-s + (0.0229 − 0.0396i)25-s + (−0.646 + 0.762i)27-s + 1.30·29-s + (1.39 + 0.805i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 672 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.982 - 0.188i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 672 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.982 - 0.188i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.26555 + 0.120380i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.26555 + 0.120380i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (1.66 - 0.493i)T \) |
| 7 | \( 1 + (-0.451 + 2.60i)T \) |
good | 5 | \( 1 + (-1.09 - 1.89i)T + (-2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (-1.45 - 0.837i)T + (5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + 1.56iT - 13T^{2} \) |
| 17 | \( 1 + (0.278 + 0.160i)T + (8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (2.87 + 4.97i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-3.26 - 5.65i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 - 7.04T + 29T^{2} \) |
| 31 | \( 1 + (-7.76 - 4.48i)T + (15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (-0.946 + 0.546i)T + (18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + 3.44iT - 41T^{2} \) |
| 43 | \( 1 - 11.6T + 43T^{2} \) |
| 47 | \( 1 + (-2.25 - 3.90i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (4.42 - 7.67i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (5.37 + 3.10i)T + (29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-3.80 + 2.19i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (0.716 - 1.24i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 6.37T + 71T^{2} \) |
| 73 | \( 1 + (4.49 - 7.77i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (-3.58 + 2.07i)T + (39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + 9.06iT - 83T^{2} \) |
| 89 | \( 1 + (-4.57 + 2.64i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 - 4.23T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.65067438052112579374656976473, −9.967392569365098419867796232857, −9.047637746933330444654188467343, −7.60607428345784660637800341060, −6.79393330629371334815965874833, −6.25577678369048567540457599444, −4.99794744931052194245462834413, −4.18367968130574883797994907628, −2.85465793280021317871943817650, −1.04101922771862168294472133804,
1.11772078575837535168978741870, 2.37154115504505573980526093247, 4.31743447306163495206882182477, 5.08284785578325137829620472059, 6.06500615978195378971839681642, 6.53730810416618329294284843531, 8.015472152129602021917846587247, 8.745501626997243903087725562614, 9.616210322301302814318405194819, 10.54112400353428642845564658909