Properties

Label 672.2.bd.a.431.4
Level $672$
Weight $2$
Character 672.431
Analytic conductor $5.366$
Analytic rank $0$
Dimension $56$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [672,2,Mod(431,672)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(672, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 3, 3, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("672.431");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 672 = 2^{5} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 672.bd (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.36594701583\)
Analytic rank: \(0\)
Dimension: \(56\)
Relative dimension: \(28\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 168)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 431.4
Character \(\chi\) \(=\) 672.431
Dual form 672.2.bd.a.527.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.66017 + 0.493786i) q^{3} +(1.09212 + 1.89161i) q^{5} +(0.451847 - 2.60688i) q^{7} +(2.51235 - 1.63954i) q^{9} +(1.45052 + 0.837460i) q^{11} -1.56085i q^{13} +(-2.74716 - 2.60112i) q^{15} +(-0.278795 - 0.160963i) q^{17} +(-2.87437 - 4.97856i) q^{19} +(0.537096 + 4.55099i) q^{21} +(3.26717 + 5.65891i) q^{23} +(0.114544 - 0.198397i) q^{25} +(-3.36136 + 3.96248i) q^{27} +7.04205 q^{29} +(7.76983 + 4.48591i) q^{31} +(-2.82165 - 0.674082i) q^{33} +(5.42467 - 1.99231i) q^{35} +(0.946173 - 0.546273i) q^{37} +(0.770727 + 2.59129i) q^{39} -3.44933i q^{41} +11.6570 q^{43} +(5.84516 + 2.96181i) q^{45} +(2.25371 + 3.90354i) q^{47} +(-6.59167 - 2.35583i) q^{49} +(0.542330 + 0.129561i) q^{51} +(-4.42876 + 7.67084i) q^{53} +3.65843i q^{55} +(7.23030 + 6.84595i) q^{57} +(-5.37016 - 3.10046i) q^{59} +(3.80578 - 2.19727i) q^{61} +(-3.13889 - 7.29023i) q^{63} +(2.95253 - 1.70464i) q^{65} +(-0.716072 + 1.24027i) q^{67} +(-8.21836 - 7.78149i) q^{69} +6.37080 q^{71} +(-4.49012 + 7.77711i) q^{73} +(-0.0921980 + 0.385933i) q^{75} +(2.83858 - 3.40294i) q^{77} +(3.58799 - 2.07153i) q^{79} +(3.62382 - 8.23820i) q^{81} -9.06459i q^{83} -0.703162i q^{85} +(-11.6910 + 3.47726i) q^{87} +(4.57586 - 2.64187i) q^{89} +(-4.06896 - 0.705268i) q^{91} +(-15.1143 - 3.61076i) q^{93} +(6.27833 - 10.8744i) q^{95} +4.23153 q^{97} +(5.01728 - 0.274197i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q + 2 q^{3} - 2 q^{9} + 4 q^{19} - 16 q^{25} + 8 q^{27} - 14 q^{33} + 16 q^{43} - 16 q^{49} + 34 q^{51} + 4 q^{57} + 36 q^{67} + 4 q^{73} - 10 q^{81} - 72 q^{91} - 32 q^{97} + 44 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/672\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(421\) \(449\) \(577\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.66017 + 0.493786i −0.958502 + 0.285087i
\(4\) 0 0
\(5\) 1.09212 + 1.89161i 0.488411 + 0.845953i 0.999911 0.0133302i \(-0.00424327\pi\)
−0.511500 + 0.859283i \(0.670910\pi\)
\(6\) 0 0
\(7\) 0.451847 2.60688i 0.170782 0.985309i
\(8\) 0 0
\(9\) 2.51235 1.63954i 0.837450 0.546513i
\(10\) 0 0
\(11\) 1.45052 + 0.837460i 0.437349 + 0.252504i 0.702473 0.711711i \(-0.252079\pi\)
−0.265123 + 0.964215i \(0.585413\pi\)
\(12\) 0 0
\(13\) 1.56085i 0.432903i −0.976293 0.216452i \(-0.930552\pi\)
0.976293 0.216452i \(-0.0694483\pi\)
\(14\) 0 0
\(15\) −2.74716 2.60112i −0.709313 0.671608i
\(16\) 0 0
\(17\) −0.278795 0.160963i −0.0676178 0.0390392i 0.465810 0.884885i \(-0.345763\pi\)
−0.533428 + 0.845846i \(0.679096\pi\)
\(18\) 0 0
\(19\) −2.87437 4.97856i −0.659427 1.14216i −0.980764 0.195196i \(-0.937466\pi\)
0.321337 0.946965i \(-0.395868\pi\)
\(20\) 0 0
\(21\) 0.537096 + 4.55099i 0.117204 + 0.993108i
\(22\) 0 0
\(23\) 3.26717 + 5.65891i 0.681252 + 1.17996i 0.974599 + 0.223958i \(0.0718977\pi\)
−0.293346 + 0.956006i \(0.594769\pi\)
\(24\) 0 0
\(25\) 0.114544 0.198397i 0.0229089 0.0396793i
\(26\) 0 0
\(27\) −3.36136 + 3.96248i −0.646894 + 0.762580i
\(28\) 0 0
\(29\) 7.04205 1.30768 0.653838 0.756635i \(-0.273158\pi\)
0.653838 + 0.756635i \(0.273158\pi\)
\(30\) 0 0
\(31\) 7.76983 + 4.48591i 1.39550 + 0.805694i 0.993917 0.110128i \(-0.0351259\pi\)
0.401585 + 0.915822i \(0.368459\pi\)
\(32\) 0 0
\(33\) −2.82165 0.674082i −0.491186 0.117343i
\(34\) 0 0
\(35\) 5.42467 1.99231i 0.916937 0.336762i
\(36\) 0 0
\(37\) 0.946173 0.546273i 0.155550 0.0898068i −0.420205 0.907429i \(-0.638042\pi\)
0.575755 + 0.817623i \(0.304708\pi\)
\(38\) 0 0
\(39\) 0.770727 + 2.59129i 0.123415 + 0.414938i
\(40\) 0 0
\(41\) 3.44933i 0.538694i −0.963043 0.269347i \(-0.913192\pi\)
0.963043 0.269347i \(-0.0868079\pi\)
\(42\) 0 0
\(43\) 11.6570 1.77768 0.888841 0.458215i \(-0.151511\pi\)
0.888841 + 0.458215i \(0.151511\pi\)
\(44\) 0 0
\(45\) 5.84516 + 2.96181i 0.871345 + 0.441521i
\(46\) 0 0
\(47\) 2.25371 + 3.90354i 0.328737 + 0.569390i 0.982262 0.187516i \(-0.0600436\pi\)
−0.653524 + 0.756906i \(0.726710\pi\)
\(48\) 0 0
\(49\) −6.59167 2.35583i −0.941667 0.336546i
\(50\) 0 0
\(51\) 0.542330 + 0.129561i 0.0759413 + 0.0181421i
\(52\) 0 0
\(53\) −4.42876 + 7.67084i −0.608337 + 1.05367i 0.383177 + 0.923675i \(0.374830\pi\)
−0.991515 + 0.129996i \(0.958504\pi\)
\(54\) 0 0
\(55\) 3.65843i 0.493303i
\(56\) 0 0
\(57\) 7.23030 + 6.84595i 0.957677 + 0.906769i
\(58\) 0 0
\(59\) −5.37016 3.10046i −0.699135 0.403646i 0.107890 0.994163i \(-0.465591\pi\)
−0.807025 + 0.590517i \(0.798924\pi\)
\(60\) 0 0
\(61\) 3.80578 2.19727i 0.487280 0.281331i −0.236165 0.971713i \(-0.575891\pi\)
0.723445 + 0.690382i \(0.242557\pi\)
\(62\) 0 0
\(63\) −3.13889 7.29023i −0.395463 0.918482i
\(64\) 0 0
\(65\) 2.95253 1.70464i 0.366216 0.211435i
\(66\) 0 0
\(67\) −0.716072 + 1.24027i −0.0874821 + 0.151523i −0.906446 0.422321i \(-0.861215\pi\)
0.818964 + 0.573845i \(0.194549\pi\)
\(68\) 0 0
\(69\) −8.21836 7.78149i −0.989374 0.936781i
\(70\) 0 0
\(71\) 6.37080 0.756074 0.378037 0.925790i \(-0.376599\pi\)
0.378037 + 0.925790i \(0.376599\pi\)
\(72\) 0 0
\(73\) −4.49012 + 7.77711i −0.525528 + 0.910242i 0.474030 + 0.880509i \(0.342799\pi\)
−0.999558 + 0.0297328i \(0.990534\pi\)
\(74\) 0 0
\(75\) −0.0921980 + 0.385933i −0.0106461 + 0.0445637i
\(76\) 0 0
\(77\) 2.83858 3.40294i 0.323486 0.387801i
\(78\) 0 0
\(79\) 3.58799 2.07153i 0.403681 0.233065i −0.284390 0.958709i \(-0.591791\pi\)
0.688071 + 0.725643i \(0.258458\pi\)
\(80\) 0 0
\(81\) 3.62382 8.23820i 0.402647 0.915356i
\(82\) 0 0
\(83\) 9.06459i 0.994968i −0.867473 0.497484i \(-0.834257\pi\)
0.867473 0.497484i \(-0.165743\pi\)
\(84\) 0 0
\(85\) 0.703162i 0.0762687i
\(86\) 0 0
\(87\) −11.6910 + 3.47726i −1.25341 + 0.372802i
\(88\) 0 0
\(89\) 4.57586 2.64187i 0.485040 0.280038i −0.237474 0.971394i \(-0.576320\pi\)
0.722515 + 0.691356i \(0.242986\pi\)
\(90\) 0 0
\(91\) −4.06896 0.705268i −0.426543 0.0739322i
\(92\) 0 0
\(93\) −15.1143 3.61076i −1.56728 0.374419i
\(94\) 0 0
\(95\) 6.27833 10.8744i 0.644143 1.11569i
\(96\) 0 0
\(97\) 4.23153 0.429647 0.214823 0.976653i \(-0.431082\pi\)
0.214823 + 0.976653i \(0.431082\pi\)
\(98\) 0 0
\(99\) 5.01728 0.274197i 0.504255 0.0275578i
\(100\) 0 0
\(101\) 2.47136 4.28052i 0.245909 0.425927i −0.716478 0.697610i \(-0.754247\pi\)
0.962387 + 0.271683i \(0.0875802\pi\)
\(102\) 0 0
\(103\) −15.8817 + 9.16928i −1.56487 + 0.903476i −0.568114 + 0.822950i \(0.692327\pi\)
−0.996752 + 0.0805264i \(0.974340\pi\)
\(104\) 0 0
\(105\) −8.02212 + 5.98621i −0.782879 + 0.584194i
\(106\) 0 0
\(107\) 3.83045 2.21151i 0.370303 0.213795i −0.303288 0.952899i \(-0.598084\pi\)
0.673591 + 0.739104i \(0.264751\pi\)
\(108\) 0 0
\(109\) −7.04986 4.07024i −0.675255 0.389858i 0.122810 0.992430i \(-0.460809\pi\)
−0.798065 + 0.602572i \(0.794143\pi\)
\(110\) 0 0
\(111\) −1.30107 + 1.37411i −0.123492 + 0.130425i
\(112\) 0 0
\(113\) 13.4000i 1.26056i 0.776367 + 0.630281i \(0.217060\pi\)
−0.776367 + 0.630281i \(0.782940\pi\)
\(114\) 0 0
\(115\) −7.13629 + 12.3604i −0.665463 + 1.15262i
\(116\) 0 0
\(117\) −2.55908 3.92141i −0.236587 0.362535i
\(118\) 0 0
\(119\) −0.545583 + 0.654056i −0.0500136 + 0.0599572i
\(120\) 0 0
\(121\) −4.09732 7.09677i −0.372484 0.645161i
\(122\) 0 0
\(123\) 1.70323 + 5.72648i 0.153575 + 0.516339i
\(124\) 0 0
\(125\) 11.4216 1.02158
\(126\) 0 0
\(127\) 12.5356i 1.11236i −0.831063 0.556178i \(-0.812267\pi\)
0.831063 0.556178i \(-0.187733\pi\)
\(128\) 0 0
\(129\) −19.3527 + 5.75608i −1.70391 + 0.506795i
\(130\) 0 0
\(131\) −14.8145 + 8.55318i −1.29435 + 0.747295i −0.979423 0.201820i \(-0.935315\pi\)
−0.314930 + 0.949115i \(0.601981\pi\)
\(132\) 0 0
\(133\) −14.2773 + 5.24361i −1.23800 + 0.454678i
\(134\) 0 0
\(135\) −11.1665 2.03086i −0.961057 0.174789i
\(136\) 0 0
\(137\) −17.9399 10.3576i −1.53271 0.884909i −0.999236 0.0390917i \(-0.987554\pi\)
−0.533472 0.845818i \(-0.679113\pi\)
\(138\) 0 0
\(139\) −1.27255 −0.107936 −0.0539682 0.998543i \(-0.517187\pi\)
−0.0539682 + 0.998543i \(0.517187\pi\)
\(140\) 0 0
\(141\) −5.66906 5.36770i −0.477421 0.452042i
\(142\) 0 0
\(143\) 1.30715 2.26406i 0.109310 0.189330i
\(144\) 0 0
\(145\) 7.69077 + 13.3208i 0.638684 + 1.10623i
\(146\) 0 0
\(147\) 12.1066 + 0.656207i 0.998534 + 0.0541230i
\(148\) 0 0
\(149\) 2.47136 + 4.28052i 0.202461 + 0.350674i 0.949321 0.314308i \(-0.101773\pi\)
−0.746859 + 0.664982i \(0.768439\pi\)
\(150\) 0 0
\(151\) −5.48605 3.16737i −0.446448 0.257757i 0.259881 0.965641i \(-0.416317\pi\)
−0.706329 + 0.707884i \(0.749650\pi\)
\(152\) 0 0
\(153\) −0.964337 + 0.0527015i −0.0779620 + 0.00426066i
\(154\) 0 0
\(155\) 19.5966i 1.57404i
\(156\) 0 0
\(157\) 2.09256 + 1.20814i 0.167004 + 0.0964199i 0.581172 0.813780i \(-0.302594\pi\)
−0.414168 + 0.910200i \(0.635928\pi\)
\(158\) 0 0
\(159\) 3.56476 14.9218i 0.282704 1.18337i
\(160\) 0 0
\(161\) 16.2284 5.96017i 1.27897 0.469727i
\(162\) 0 0
\(163\) −4.46077 7.72628i −0.349395 0.605169i 0.636747 0.771072i \(-0.280279\pi\)
−0.986142 + 0.165903i \(0.946946\pi\)
\(164\) 0 0
\(165\) −1.80648 6.07363i −0.140634 0.472832i
\(166\) 0 0
\(167\) −7.01131 −0.542551 −0.271276 0.962502i \(-0.587445\pi\)
−0.271276 + 0.962502i \(0.587445\pi\)
\(168\) 0 0
\(169\) 10.5637 0.812595
\(170\) 0 0
\(171\) −15.3840 7.79525i −1.17644 0.596118i
\(172\) 0 0
\(173\) −7.11660 12.3263i −0.541065 0.937152i −0.998843 0.0480854i \(-0.984688\pi\)
0.457778 0.889066i \(-0.348645\pi\)
\(174\) 0 0
\(175\) −0.465440 0.388249i −0.0351840 0.0293488i
\(176\) 0 0
\(177\) 10.4464 + 2.49560i 0.785196 + 0.187581i
\(178\) 0 0
\(179\) −1.07613 0.621304i −0.0804338 0.0464384i 0.459244 0.888310i \(-0.348120\pi\)
−0.539677 + 0.841872i \(0.681454\pi\)
\(180\) 0 0
\(181\) 20.9487i 1.55710i 0.627580 + 0.778552i \(0.284046\pi\)
−0.627580 + 0.778552i \(0.715954\pi\)
\(182\) 0 0
\(183\) −5.23327 + 5.52709i −0.386855 + 0.408574i
\(184\) 0 0
\(185\) 2.06667 + 1.19319i 0.151945 + 0.0877253i
\(186\) 0 0
\(187\) −0.269600 0.466960i −0.0197151 0.0341475i
\(188\) 0 0
\(189\) 8.81091 + 10.5531i 0.640899 + 0.767625i
\(190\) 0 0
\(191\) −12.2119 21.1516i −0.883621 1.53048i −0.847287 0.531136i \(-0.821765\pi\)
−0.0363339 0.999340i \(-0.511568\pi\)
\(192\) 0 0
\(193\) 0.00662606 0.0114767i 0.000476954 0.000826109i −0.865787 0.500413i \(-0.833182\pi\)
0.866264 + 0.499587i \(0.166515\pi\)
\(194\) 0 0
\(195\) −4.05998 + 4.28792i −0.290741 + 0.307064i
\(196\) 0 0
\(197\) 6.48422 0.461981 0.230991 0.972956i \(-0.425803\pi\)
0.230991 + 0.972956i \(0.425803\pi\)
\(198\) 0 0
\(199\) −4.47013 2.58083i −0.316879 0.182950i 0.333121 0.942884i \(-0.391898\pi\)
−0.650001 + 0.759934i \(0.725231\pi\)
\(200\) 0 0
\(201\) 0.576375 2.41265i 0.0406543 0.170175i
\(202\) 0 0
\(203\) 3.18193 18.3578i 0.223328 1.28846i
\(204\) 0 0
\(205\) 6.52478 3.76708i 0.455710 0.263104i
\(206\) 0 0
\(207\) 17.4863 + 8.86051i 1.21538 + 0.615848i
\(208\) 0 0
\(209\) 9.62870i 0.666031i
\(210\) 0 0
\(211\) 16.8357 1.15902 0.579509 0.814966i \(-0.303244\pi\)
0.579509 + 0.814966i \(0.303244\pi\)
\(212\) 0 0
\(213\) −10.5766 + 3.14581i −0.724698 + 0.215547i
\(214\) 0 0
\(215\) 12.7309 + 22.0506i 0.868240 + 1.50384i
\(216\) 0 0
\(217\) 15.2050 18.2281i 1.03218 1.23740i
\(218\) 0 0
\(219\) 3.61415 15.1285i 0.244221 1.02229i
\(220\) 0 0
\(221\) −0.251239 + 0.435159i −0.0169002 + 0.0292720i
\(222\) 0 0
\(223\) 1.80170i 0.120651i 0.998179 + 0.0603254i \(0.0192138\pi\)
−0.998179 + 0.0603254i \(0.980786\pi\)
\(224\) 0 0
\(225\) −0.0375035 0.686242i −0.00250023 0.0457495i
\(226\) 0 0
\(227\) 10.0476 + 5.80096i 0.666879 + 0.385023i 0.794893 0.606749i \(-0.207527\pi\)
−0.128014 + 0.991772i \(0.540860\pi\)
\(228\) 0 0
\(229\) 8.50697 4.91150i 0.562156 0.324561i −0.191854 0.981423i \(-0.561450\pi\)
0.754010 + 0.656862i \(0.228117\pi\)
\(230\) 0 0
\(231\) −3.03220 + 7.05112i −0.199504 + 0.463930i
\(232\) 0 0
\(233\) −6.94161 + 4.00774i −0.454760 + 0.262556i −0.709838 0.704365i \(-0.751232\pi\)
0.255079 + 0.966920i \(0.417899\pi\)
\(234\) 0 0
\(235\) −4.92265 + 8.52627i −0.321118 + 0.556193i
\(236\) 0 0
\(237\) −4.93380 + 5.21080i −0.320485 + 0.338478i
\(238\) 0 0
\(239\) 6.02441 0.389686 0.194843 0.980834i \(-0.437580\pi\)
0.194843 + 0.980834i \(0.437580\pi\)
\(240\) 0 0
\(241\) 5.11917 8.86666i 0.329755 0.571152i −0.652708 0.757609i \(-0.726367\pi\)
0.982463 + 0.186457i \(0.0597006\pi\)
\(242\) 0 0
\(243\) −1.94826 + 15.4662i −0.124981 + 0.992159i
\(244\) 0 0
\(245\) −2.74260 15.0417i −0.175218 0.960979i
\(246\) 0 0
\(247\) −7.77081 + 4.48648i −0.494445 + 0.285468i
\(248\) 0 0
\(249\) 4.47597 + 15.0488i 0.283653 + 0.953678i
\(250\) 0 0
\(251\) 9.97684i 0.629733i −0.949136 0.314866i \(-0.898040\pi\)
0.949136 0.314866i \(-0.101960\pi\)
\(252\) 0 0
\(253\) 10.9445i 0.688075i
\(254\) 0 0
\(255\) 0.347212 + 1.16737i 0.0217432 + 0.0731036i
\(256\) 0 0
\(257\) −17.1555 + 9.90475i −1.07013 + 0.617841i −0.928218 0.372038i \(-0.878659\pi\)
−0.141915 + 0.989879i \(0.545326\pi\)
\(258\) 0 0
\(259\) −0.996544 2.71339i −0.0619222 0.168602i
\(260\) 0 0
\(261\) 17.6921 11.5457i 1.09511 0.714662i
\(262\) 0 0
\(263\) −3.41780 + 5.91981i −0.210751 + 0.365031i −0.951950 0.306254i \(-0.900924\pi\)
0.741199 + 0.671285i \(0.234258\pi\)
\(264\) 0 0
\(265\) −19.3470 −1.18847
\(266\) 0 0
\(267\) −6.29220 + 6.64546i −0.385077 + 0.406696i
\(268\) 0 0
\(269\) −12.0822 + 20.9270i −0.736665 + 1.27594i 0.217324 + 0.976099i \(0.430267\pi\)
−0.953989 + 0.299842i \(0.903066\pi\)
\(270\) 0 0
\(271\) 15.2835 8.82392i 0.928405 0.536015i 0.0420983 0.999113i \(-0.486596\pi\)
0.886307 + 0.463099i \(0.153262\pi\)
\(272\) 0 0
\(273\) 7.10344 0.838329i 0.429919 0.0507380i
\(274\) 0 0
\(275\) 0.332299 0.191853i 0.0200384 0.0115692i
\(276\) 0 0
\(277\) 12.9250 + 7.46224i 0.776587 + 0.448363i 0.835219 0.549917i \(-0.185341\pi\)
−0.0586324 + 0.998280i \(0.518674\pi\)
\(278\) 0 0
\(279\) 26.8754 1.46875i 1.60899 0.0879320i
\(280\) 0 0
\(281\) 13.8890i 0.828547i 0.910152 + 0.414273i \(0.135964\pi\)
−0.910152 + 0.414273i \(0.864036\pi\)
\(282\) 0 0
\(283\) −2.88865 + 5.00329i −0.171712 + 0.297415i −0.939019 0.343866i \(-0.888263\pi\)
0.767306 + 0.641281i \(0.221597\pi\)
\(284\) 0 0
\(285\) −5.05350 + 21.1535i −0.299343 + 1.25303i
\(286\) 0 0
\(287\) −8.99199 1.55857i −0.530780 0.0919994i
\(288\) 0 0
\(289\) −8.44818 14.6327i −0.496952 0.860746i
\(290\) 0 0
\(291\) −7.02508 + 2.08947i −0.411817 + 0.122487i
\(292\) 0 0
\(293\) −15.6381 −0.913587 −0.456794 0.889573i \(-0.651002\pi\)
−0.456794 + 0.889573i \(0.651002\pi\)
\(294\) 0 0
\(295\) 13.5443i 0.788581i
\(296\) 0 0
\(297\) −8.19415 + 2.93267i −0.475473 + 0.170171i
\(298\) 0 0
\(299\) 8.83273 5.09958i 0.510810 0.294916i
\(300\) 0 0
\(301\) 5.26720 30.3885i 0.303597 1.75157i
\(302\) 0 0
\(303\) −1.98922 + 8.32672i −0.114278 + 0.478358i
\(304\) 0 0
\(305\) 8.31274 + 4.79936i 0.475986 + 0.274811i
\(306\) 0 0
\(307\) −7.19887 −0.410861 −0.205430 0.978672i \(-0.565859\pi\)
−0.205430 + 0.978672i \(0.565859\pi\)
\(308\) 0 0
\(309\) 21.8387 23.0647i 1.24236 1.31211i
\(310\) 0 0
\(311\) −4.35089 + 7.53597i −0.246717 + 0.427326i −0.962613 0.270881i \(-0.912685\pi\)
0.715896 + 0.698207i \(0.246018\pi\)
\(312\) 0 0
\(313\) 9.57541 + 16.5851i 0.541234 + 0.937445i 0.998834 + 0.0482863i \(0.0153760\pi\)
−0.457600 + 0.889158i \(0.651291\pi\)
\(314\) 0 0
\(315\) 10.3622 13.8994i 0.583844 0.783140i
\(316\) 0 0
\(317\) 1.83178 + 3.17274i 0.102883 + 0.178199i 0.912871 0.408247i \(-0.133860\pi\)
−0.809988 + 0.586446i \(0.800527\pi\)
\(318\) 0 0
\(319\) 10.2147 + 5.89744i 0.571911 + 0.330193i
\(320\) 0 0
\(321\) −5.26720 + 5.56291i −0.293986 + 0.310491i
\(322\) 0 0
\(323\) 1.85067i 0.102974i
\(324\) 0 0
\(325\) −0.309668 0.178787i −0.0171773 0.00991732i
\(326\) 0 0
\(327\) 13.7138 + 3.27618i 0.758376 + 0.181173i
\(328\) 0 0
\(329\) 11.1944 4.11135i 0.617167 0.226666i
\(330\) 0 0
\(331\) −5.41365 9.37672i −0.297561 0.515391i 0.678016 0.735047i \(-0.262840\pi\)
−0.975577 + 0.219656i \(0.929507\pi\)
\(332\) 0 0
\(333\) 1.48148 2.92372i 0.0811847 0.160219i
\(334\) 0 0
\(335\) −3.12815 −0.170909
\(336\) 0 0
\(337\) −20.0426 −1.09179 −0.545894 0.837854i \(-0.683810\pi\)
−0.545894 + 0.837854i \(0.683810\pi\)
\(338\) 0 0
\(339\) −6.61670 22.2462i −0.359370 1.20825i
\(340\) 0 0
\(341\) 7.51355 + 13.0139i 0.406882 + 0.704740i
\(342\) 0 0
\(343\) −9.11979 + 16.1192i −0.492422 + 0.870357i
\(344\) 0 0
\(345\) 5.74408 24.0442i 0.309251 1.29450i
\(346\) 0 0
\(347\) −5.06136 2.92218i −0.271708 0.156871i 0.357955 0.933739i \(-0.383474\pi\)
−0.629664 + 0.776868i \(0.716807\pi\)
\(348\) 0 0
\(349\) 18.6166i 0.996526i −0.867026 0.498263i \(-0.833971\pi\)
0.867026 0.498263i \(-0.166029\pi\)
\(350\) 0 0
\(351\) 6.18486 + 5.24659i 0.330123 + 0.280042i
\(352\) 0 0
\(353\) −5.78219 3.33835i −0.307755 0.177682i 0.338167 0.941086i \(-0.390193\pi\)
−0.645921 + 0.763404i \(0.723527\pi\)
\(354\) 0 0
\(355\) 6.95768 + 12.0511i 0.369275 + 0.639603i
\(356\) 0 0
\(357\) 0.582800 1.35525i 0.0308450 0.0717273i
\(358\) 0 0
\(359\) 12.1282 + 21.0067i 0.640102 + 1.10869i 0.985410 + 0.170200i \(0.0544414\pi\)
−0.345307 + 0.938490i \(0.612225\pi\)
\(360\) 0 0
\(361\) −7.02406 + 12.1660i −0.369687 + 0.640317i
\(362\) 0 0
\(363\) 10.3065 + 9.75866i 0.540953 + 0.512197i
\(364\) 0 0
\(365\) −19.6150 −1.02670
\(366\) 0 0
\(367\) 6.54864 + 3.78086i 0.341836 + 0.197359i 0.661084 0.750312i \(-0.270097\pi\)
−0.319248 + 0.947671i \(0.603430\pi\)
\(368\) 0 0
\(369\) −5.65531 8.66592i −0.294404 0.451130i
\(370\) 0 0
\(371\) 17.9958 + 15.0113i 0.934298 + 0.779348i
\(372\) 0 0
\(373\) −16.9620 + 9.79302i −0.878260 + 0.507063i −0.870084 0.492903i \(-0.835936\pi\)
−0.00817543 + 0.999967i \(0.502602\pi\)
\(374\) 0 0
\(375\) −18.9618 + 5.63982i −0.979184 + 0.291239i
\(376\) 0 0
\(377\) 10.9916i 0.566097i
\(378\) 0 0
\(379\) −4.99759 −0.256709 −0.128354 0.991728i \(-0.540969\pi\)
−0.128354 + 0.991728i \(0.540969\pi\)
\(380\) 0 0
\(381\) 6.18991 + 20.8113i 0.317119 + 1.06620i
\(382\) 0 0
\(383\) −15.1532 26.2461i −0.774292 1.34111i −0.935192 0.354142i \(-0.884773\pi\)
0.160900 0.986971i \(-0.448560\pi\)
\(384\) 0 0
\(385\) 9.53710 + 1.65305i 0.486056 + 0.0842474i
\(386\) 0 0
\(387\) 29.2866 19.1122i 1.48872 0.971527i
\(388\) 0 0
\(389\) 2.13059 3.69030i 0.108025 0.187106i −0.806945 0.590627i \(-0.798881\pi\)
0.914970 + 0.403521i \(0.132214\pi\)
\(390\) 0 0
\(391\) 2.10357i 0.106382i
\(392\) 0 0
\(393\) 20.3713 21.5150i 1.02760 1.08529i
\(394\) 0 0
\(395\) 7.83704 + 4.52472i 0.394324 + 0.227663i
\(396\) 0 0
\(397\) 17.1398 9.89568i 0.860223 0.496650i −0.00386406 0.999993i \(-0.501230\pi\)
0.864087 + 0.503343i \(0.167897\pi\)
\(398\) 0 0
\(399\) 21.1136 15.7552i 1.05700 0.788748i
\(400\) 0 0
\(401\) −1.98773 + 1.14762i −0.0992627 + 0.0573094i −0.548810 0.835947i \(-0.684919\pi\)
0.449547 + 0.893257i \(0.351585\pi\)
\(402\) 0 0
\(403\) 7.00186 12.1276i 0.348787 0.604118i
\(404\) 0 0
\(405\) 19.5411 2.14226i 0.971005 0.106450i
\(406\) 0 0
\(407\) 1.82993 0.0907062
\(408\) 0 0
\(409\) −0.750621 + 1.30011i −0.0371158 + 0.0642865i −0.883987 0.467512i \(-0.845150\pi\)
0.846871 + 0.531799i \(0.178484\pi\)
\(410\) 0 0
\(411\) 34.8978 + 8.33695i 1.72138 + 0.411231i
\(412\) 0 0
\(413\) −10.5090 + 12.5984i −0.517116 + 0.619928i
\(414\) 0 0
\(415\) 17.1467 9.89963i 0.841696 0.485954i
\(416\) 0 0
\(417\) 2.11265 0.628367i 0.103457 0.0307713i
\(418\) 0 0
\(419\) 8.44514i 0.412572i −0.978492 0.206286i \(-0.933862\pi\)
0.978492 0.206286i \(-0.0661378\pi\)
\(420\) 0 0
\(421\) 13.9326i 0.679032i 0.940600 + 0.339516i \(0.110263\pi\)
−0.940600 + 0.339516i \(0.889737\pi\)
\(422\) 0 0
\(423\) 12.0621 + 6.11202i 0.586480 + 0.297176i
\(424\) 0 0
\(425\) −0.0638689 + 0.0368747i −0.00309809 + 0.00178869i
\(426\) 0 0
\(427\) −4.00839 10.9140i −0.193979 0.528168i
\(428\) 0 0
\(429\) −1.05214 + 4.40418i −0.0507979 + 0.212636i
\(430\) 0 0
\(431\) −16.9743 + 29.4004i −0.817624 + 1.41617i 0.0898039 + 0.995959i \(0.471376\pi\)
−0.907428 + 0.420207i \(0.861957\pi\)
\(432\) 0 0
\(433\) 4.44336 0.213534 0.106767 0.994284i \(-0.465950\pi\)
0.106767 + 0.994284i \(0.465950\pi\)
\(434\) 0 0
\(435\) −19.3456 18.3173i −0.927552 0.878245i
\(436\) 0 0
\(437\) 18.7822 32.5316i 0.898472 1.55620i
\(438\) 0 0
\(439\) 7.55680 4.36292i 0.360667 0.208231i −0.308707 0.951157i \(-0.599896\pi\)
0.669373 + 0.742926i \(0.266563\pi\)
\(440\) 0 0
\(441\) −20.4231 + 4.88864i −0.972526 + 0.232792i
\(442\) 0 0
\(443\) −32.0121 + 18.4822i −1.52094 + 0.878115i −0.521244 + 0.853407i \(0.674532\pi\)
−0.999695 + 0.0247072i \(0.992135\pi\)
\(444\) 0 0
\(445\) 9.99478 + 5.77049i 0.473798 + 0.273548i
\(446\) 0 0
\(447\) −6.21654 5.88608i −0.294032 0.278402i
\(448\) 0 0
\(449\) 23.4269i 1.10559i 0.833319 + 0.552793i \(0.186438\pi\)
−0.833319 + 0.552793i \(0.813562\pi\)
\(450\) 0 0
\(451\) 2.88868 5.00333i 0.136022 0.235598i
\(452\) 0 0
\(453\) 10.6718 + 2.54945i 0.501405 + 0.119784i
\(454\) 0 0
\(455\) −3.10971 8.46712i −0.145785 0.396945i
\(456\) 0 0
\(457\) 0.661376 + 1.14554i 0.0309378 + 0.0535859i 0.881080 0.472968i \(-0.156817\pi\)
−0.850142 + 0.526554i \(0.823484\pi\)
\(458\) 0 0
\(459\) 1.57494 0.563669i 0.0735120 0.0263098i
\(460\) 0 0
\(461\) −23.5461 −1.09665 −0.548325 0.836266i \(-0.684734\pi\)
−0.548325 + 0.836266i \(0.684734\pi\)
\(462\) 0 0
\(463\) 14.4502i 0.671557i 0.941941 + 0.335778i \(0.108999\pi\)
−0.941941 + 0.335778i \(0.891001\pi\)
\(464\) 0 0
\(465\) −9.67654 32.5338i −0.448739 1.50872i
\(466\) 0 0
\(467\) −13.0084 + 7.51039i −0.601956 + 0.347540i −0.769811 0.638272i \(-0.779649\pi\)
0.167855 + 0.985812i \(0.446316\pi\)
\(468\) 0 0
\(469\) 2.90969 + 2.42713i 0.134357 + 0.112074i
\(470\) 0 0
\(471\) −4.07057 0.972444i −0.187562 0.0448079i
\(472\) 0 0
\(473\) 16.9088 + 9.76231i 0.777468 + 0.448872i
\(474\) 0 0
\(475\) −1.31697 −0.0604269
\(476\) 0 0
\(477\) 1.45004 + 26.5330i 0.0663928 + 1.21486i
\(478\) 0 0
\(479\) 10.9550 18.9745i 0.500545 0.866969i −0.499455 0.866340i \(-0.666466\pi\)
1.00000 0.000629369i \(-0.000200335\pi\)
\(480\) 0 0
\(481\) −0.852653 1.47684i −0.0388776 0.0673380i
\(482\) 0 0
\(483\) −23.9989 + 17.9083i −1.09199 + 0.814854i
\(484\) 0 0
\(485\) 4.62134 + 8.00440i 0.209844 + 0.363461i
\(486\) 0 0
\(487\) −9.51388 5.49284i −0.431115 0.248904i 0.268707 0.963222i \(-0.413404\pi\)
−0.699821 + 0.714318i \(0.746737\pi\)
\(488\) 0 0
\(489\) 11.2208 + 10.6243i 0.507421 + 0.480448i
\(490\) 0 0
\(491\) 32.3525i 1.46005i 0.683422 + 0.730024i \(0.260491\pi\)
−0.683422 + 0.730024i \(0.739509\pi\)
\(492\) 0 0
\(493\) −1.96329 1.13351i −0.0884222 0.0510506i
\(494\) 0 0
\(495\) 5.99814 + 9.19127i 0.269597 + 0.413117i
\(496\) 0 0
\(497\) 2.87863 16.6079i 0.129124 0.744967i
\(498\) 0 0
\(499\) 7.10372 + 12.3040i 0.318006 + 0.550803i 0.980072 0.198643i \(-0.0636534\pi\)
−0.662066 + 0.749446i \(0.730320\pi\)
\(500\) 0 0
\(501\) 11.6400 3.46208i 0.520036 0.154674i
\(502\) 0 0
\(503\) −33.4106 −1.48970 −0.744852 0.667229i \(-0.767480\pi\)
−0.744852 + 0.667229i \(0.767480\pi\)
\(504\) 0 0
\(505\) 10.7961 0.480419
\(506\) 0 0
\(507\) −17.5376 + 5.21622i −0.778873 + 0.231660i
\(508\) 0 0
\(509\) 8.44815 + 14.6326i 0.374458 + 0.648580i 0.990246 0.139332i \(-0.0444956\pi\)
−0.615788 + 0.787912i \(0.711162\pi\)
\(510\) 0 0
\(511\) 18.2452 + 15.2193i 0.807118 + 0.673261i
\(512\) 0 0
\(513\) 29.3893 + 5.34507i 1.29757 + 0.235991i
\(514\) 0 0
\(515\) −34.6894 20.0279i −1.52860 0.882536i
\(516\) 0 0
\(517\) 7.54957i 0.332030i
\(518\) 0 0
\(519\) 17.9013 + 16.9497i 0.785781 + 0.744011i
\(520\) 0 0
\(521\) 31.0684 + 17.9374i 1.36113 + 0.785850i 0.989775 0.142639i \(-0.0455589\pi\)
0.371358 + 0.928490i \(0.378892\pi\)
\(522\) 0 0
\(523\) 1.10840 + 1.91980i 0.0484669 + 0.0839471i 0.889241 0.457439i \(-0.151233\pi\)
−0.840774 + 0.541386i \(0.817900\pi\)
\(524\) 0 0
\(525\) 0.964423 + 0.414732i 0.0420909 + 0.0181004i
\(526\) 0 0
\(527\) −1.44413 2.50130i −0.0629072 0.108959i
\(528\) 0 0
\(529\) −9.84883 + 17.0587i −0.428210 + 0.741681i
\(530\) 0 0
\(531\) −18.5751 + 1.01514i −0.806089 + 0.0440532i
\(532\) 0 0
\(533\) −5.38390 −0.233202
\(534\) 0 0
\(535\) 8.36662 + 4.83047i 0.361721 + 0.208840i
\(536\) 0 0
\(537\) 2.09335 + 0.500095i 0.0903349 + 0.0215807i
\(538\) 0 0
\(539\) −7.58846 8.93744i −0.326858 0.384963i
\(540\) 0 0
\(541\) −32.2404 + 18.6140i −1.38612 + 0.800279i −0.992876 0.119153i \(-0.961982\pi\)
−0.393248 + 0.919432i \(0.628649\pi\)
\(542\) 0 0
\(543\) −10.3442 34.7785i −0.443911 1.49249i
\(544\) 0 0
\(545\) 17.7808i 0.761645i
\(546\) 0 0
\(547\) −12.2271 −0.522792 −0.261396 0.965232i \(-0.584183\pi\)
−0.261396 + 0.965232i \(0.584183\pi\)
\(548\) 0 0
\(549\) 5.95895 11.7600i 0.254322 0.501906i
\(550\) 0 0
\(551\) −20.2415 35.0593i −0.862317 1.49358i
\(552\) 0 0
\(553\) −3.77901 10.2895i −0.160700 0.437554i
\(554\) 0 0
\(555\) −4.02021 0.960414i −0.170649 0.0407673i
\(556\) 0 0
\(557\) 0.649106 1.12428i 0.0275035 0.0476375i −0.851946 0.523630i \(-0.824578\pi\)
0.879450 + 0.475992i \(0.157911\pi\)
\(558\) 0 0
\(559\) 18.1949i 0.769564i
\(560\) 0 0
\(561\) 0.678160 + 0.642111i 0.0286320 + 0.0271099i
\(562\) 0 0
\(563\) 24.2080 + 13.9765i 1.02024 + 0.589038i 0.914175 0.405320i \(-0.132840\pi\)
0.106070 + 0.994359i \(0.466173\pi\)
\(564\) 0 0
\(565\) −25.3475 + 14.6344i −1.06638 + 0.615672i
\(566\) 0 0
\(567\) −19.8386 13.1693i −0.833143 0.553058i
\(568\) 0 0
\(569\) −26.1457 + 15.0952i −1.09608 + 0.632825i −0.935190 0.354147i \(-0.884771\pi\)
−0.160895 + 0.986972i \(0.551438\pi\)
\(570\) 0 0
\(571\) 16.0016 27.7156i 0.669646 1.15986i −0.308357 0.951271i \(-0.599779\pi\)
0.978003 0.208591i \(-0.0668877\pi\)
\(572\) 0 0
\(573\) 30.7182 + 29.0853i 1.28327 + 1.21505i
\(574\) 0 0
\(575\) 1.49694 0.0624269
\(576\) 0 0
\(577\) 7.72204 13.3750i 0.321473 0.556807i −0.659319 0.751863i \(-0.729155\pi\)
0.980792 + 0.195056i \(0.0624888\pi\)
\(578\) 0 0
\(579\) −0.00533339 + 0.0223251i −0.000221648 + 0.000927800i
\(580\) 0 0
\(581\) −23.6303 4.09581i −0.980351 0.169923i
\(582\) 0 0
\(583\) −12.8480 + 7.41782i −0.532112 + 0.307215i
\(584\) 0 0
\(585\) 4.62295 9.12344i 0.191136 0.377208i
\(586\) 0 0
\(587\) 1.97510i 0.0815212i 0.999169 + 0.0407606i \(0.0129781\pi\)
−0.999169 + 0.0407606i \(0.987022\pi\)
\(588\) 0 0
\(589\) 51.5768i 2.12518i
\(590\) 0 0
\(591\) −10.7649 + 3.20181i −0.442810 + 0.131705i
\(592\) 0 0
\(593\) −14.0265 + 8.09823i −0.576001 + 0.332554i −0.759543 0.650458i \(-0.774577\pi\)
0.183542 + 0.983012i \(0.441244\pi\)
\(594\) 0 0
\(595\) −1.83306 0.317722i −0.0751482 0.0130253i
\(596\) 0 0
\(597\) 8.69558 + 2.07734i 0.355886 + 0.0850200i
\(598\) 0 0
\(599\) 7.00327 12.1300i 0.286146 0.495619i −0.686741 0.726903i \(-0.740959\pi\)
0.972886 + 0.231283i \(0.0742925\pi\)
\(600\) 0 0
\(601\) −15.5923 −0.636024 −0.318012 0.948087i \(-0.603015\pi\)
−0.318012 + 0.948087i \(0.603015\pi\)
\(602\) 0 0
\(603\) 0.234452 + 4.29003i 0.00954764 + 0.174704i
\(604\) 0 0
\(605\) 8.94954 15.5011i 0.363850 0.630207i
\(606\) 0 0
\(607\) −28.3416 + 16.3630i −1.15035 + 0.664155i −0.948973 0.315359i \(-0.897875\pi\)
−0.201378 + 0.979514i \(0.564542\pi\)
\(608\) 0 0
\(609\) 3.78226 + 32.0483i 0.153265 + 1.29866i
\(610\) 0 0
\(611\) 6.09286 3.51771i 0.246491 0.142311i
\(612\) 0 0
\(613\) −0.287887 0.166212i −0.0116277 0.00671323i 0.494175 0.869363i \(-0.335470\pi\)
−0.505803 + 0.862649i \(0.668804\pi\)
\(614\) 0 0
\(615\) −8.97213 + 9.47585i −0.361791 + 0.382103i
\(616\) 0 0
\(617\) 39.1386i 1.57566i −0.615893 0.787830i \(-0.711205\pi\)
0.615893 0.787830i \(-0.288795\pi\)
\(618\) 0 0
\(619\) −1.61116 + 2.79062i −0.0647581 + 0.112164i −0.896587 0.442868i \(-0.853961\pi\)
0.831829 + 0.555033i \(0.187294\pi\)
\(620\) 0 0
\(621\) −33.4055 6.07550i −1.34052 0.243801i
\(622\) 0 0
\(623\) −4.81946 13.1225i −0.193088 0.525740i
\(624\) 0 0
\(625\) 11.9010 + 20.6132i 0.476042 + 0.824528i
\(626\) 0 0
\(627\) 4.75451 + 15.9853i 0.189877 + 0.638392i
\(628\) 0 0
\(629\) −0.351718 −0.0140239
\(630\) 0 0
\(631\) 10.2850i 0.409441i 0.978820 + 0.204721i \(0.0656286\pi\)
−0.978820 + 0.204721i \(0.934371\pi\)
\(632\) 0 0
\(633\) −27.9502 + 8.31323i −1.11092 + 0.330421i
\(634\) 0 0
\(635\) 23.7125 13.6904i 0.941002 0.543287i
\(636\) 0 0
\(637\) −3.67710 + 10.2886i −0.145692 + 0.407650i
\(638\) 0 0
\(639\) 16.0057 10.4452i 0.633175 0.413205i
\(640\) 0 0
\(641\) −26.2428 15.1513i −1.03653 0.598439i −0.117680 0.993052i \(-0.537546\pi\)
−0.918848 + 0.394612i \(0.870879\pi\)
\(642\) 0 0
\(643\) 37.4668 1.47755 0.738773 0.673955i \(-0.235406\pi\)
0.738773 + 0.673955i \(0.235406\pi\)
\(644\) 0 0
\(645\) −32.0238 30.3214i −1.26093 1.19390i
\(646\) 0 0
\(647\) −0.130900 + 0.226726i −0.00514622 + 0.00891351i −0.868587 0.495537i \(-0.834971\pi\)
0.863441 + 0.504450i \(0.168305\pi\)
\(648\) 0 0
\(649\) −5.19303 8.99459i −0.203844 0.353069i
\(650\) 0 0
\(651\) −16.2422 + 37.7698i −0.636583 + 1.48032i
\(652\) 0 0
\(653\) −22.1548 38.3732i −0.866984 1.50166i −0.865064 0.501662i \(-0.832722\pi\)
−0.00192051 0.999998i \(-0.500611\pi\)
\(654\) 0 0
\(655\) −32.3586 18.6822i −1.26435 0.729975i
\(656\) 0 0
\(657\) 1.47013 + 26.9006i 0.0573552 + 1.04949i
\(658\) 0 0
\(659\) 23.4513i 0.913534i −0.889586 0.456767i \(-0.849007\pi\)
0.889586 0.456767i \(-0.150993\pi\)
\(660\) 0 0
\(661\) −29.3695 16.9565i −1.14234 0.659531i −0.195332 0.980737i \(-0.562578\pi\)
−0.947009 + 0.321206i \(0.895912\pi\)
\(662\) 0 0
\(663\) 0.202225 0.846498i 0.00785378 0.0328752i
\(664\) 0 0
\(665\) −25.5114 21.2804i −0.989289 0.825219i
\(666\) 0 0
\(667\) 23.0076 + 39.8503i 0.890857 + 1.54301i
\(668\) 0 0
\(669\) −0.889654 2.99114i −0.0343960 0.115644i
\(670\) 0 0
\(671\) 7.36050 0.284149
\(672\) 0 0
\(673\) −13.3855 −0.515973 −0.257986 0.966149i \(-0.583059\pi\)
−0.257986 + 0.966149i \(0.583059\pi\)
\(674\) 0 0
\(675\) 0.401119 + 1.12076i 0.0154391 + 0.0431381i
\(676\) 0 0
\(677\) −13.0777 22.6513i −0.502618 0.870559i −0.999995 0.00302522i \(-0.999037\pi\)
0.497378 0.867534i \(-0.334296\pi\)
\(678\) 0 0
\(679\) 1.91201 11.0311i 0.0733761 0.423335i
\(680\) 0 0
\(681\) −19.5451 4.66926i −0.748970 0.178926i
\(682\) 0 0
\(683\) 19.0543 + 11.0010i 0.729092 + 0.420942i 0.818090 0.575090i \(-0.195033\pi\)
−0.0889978 + 0.996032i \(0.528366\pi\)
\(684\) 0 0
\(685\) 45.2470i 1.72880i
\(686\) 0 0
\(687\) −11.6978 + 12.3546i −0.446299 + 0.471356i
\(688\) 0 0
\(689\) 11.9731 + 6.91265i 0.456137 + 0.263351i
\(690\) 0 0
\(691\) −17.0852 29.5924i −0.649952 1.12575i −0.983134 0.182887i \(-0.941456\pi\)
0.333182 0.942862i \(-0.391878\pi\)
\(692\) 0 0
\(693\) 1.55224 13.2033i 0.0589649 0.501553i
\(694\) 0 0
\(695\) −1.38978 2.40717i −0.0527173 0.0913091i
\(696\) 0 0
\(697\) −0.555213 + 0.961656i −0.0210302 + 0.0364253i
\(698\) 0 0
\(699\) 9.54531 10.0812i 0.361037 0.381306i
\(700\) 0 0
\(701\) 25.6168 0.967533 0.483767 0.875197i \(-0.339268\pi\)
0.483767 + 0.875197i \(0.339268\pi\)
\(702\) 0 0
\(703\) −5.43931 3.14039i −0.205147 0.118442i
\(704\) 0 0
\(705\) 3.96229 16.5858i 0.149229 0.624658i
\(706\) 0 0
\(707\) −10.0421 8.37668i −0.377673 0.315037i
\(708\) 0 0
\(709\) −0.228674 + 0.132025i −0.00858802 + 0.00495830i −0.504288 0.863536i \(-0.668245\pi\)
0.495700 + 0.868494i \(0.334912\pi\)
\(710\) 0 0
\(711\) 5.61795 11.0871i 0.210689 0.415797i
\(712\) 0 0
\(713\) 58.6250i 2.19552i
\(714\) 0 0
\(715\) 5.71028 0.213552
\(716\) 0 0
\(717\) −10.0016 + 2.97477i −0.373515 + 0.111095i
\(718\) 0 0
\(719\) 19.9630 + 34.5770i 0.744496 + 1.28950i 0.950430 + 0.310939i \(0.100643\pi\)
−0.205934 + 0.978566i \(0.566023\pi\)
\(720\) 0 0
\(721\) 16.7271 + 45.5447i 0.622952 + 1.69617i
\(722\) 0 0
\(723\) −4.12048 + 17.2480i −0.153242 + 0.641459i
\(724\) 0 0
\(725\) 0.806627 1.39712i 0.0299574 0.0518877i
\(726\) 0 0
\(727\) 4.46181i 0.165479i 0.996571 + 0.0827397i \(0.0263670\pi\)
−0.996571 + 0.0827397i \(0.973633\pi\)
\(728\) 0 0
\(729\) −4.40255 26.6386i −0.163057 0.986617i
\(730\) 0 0
\(731\) −3.24993 1.87635i −0.120203 0.0693992i
\(732\) 0 0
\(733\) −3.91514 + 2.26041i −0.144609 + 0.0834900i −0.570559 0.821257i \(-0.693273\pi\)
0.425950 + 0.904747i \(0.359940\pi\)
\(734\) 0 0
\(735\) 11.9806 + 23.6176i 0.441910 + 0.871148i
\(736\) 0 0
\(737\) −2.07736 + 1.19936i −0.0765205 + 0.0441791i
\(738\) 0 0
\(739\) 0.571921 0.990596i 0.0210384 0.0364397i −0.855315 0.518109i \(-0.826636\pi\)
0.876353 + 0.481670i \(0.159969\pi\)
\(740\) 0 0
\(741\) 10.6855 11.2854i 0.392543 0.414581i
\(742\) 0 0
\(743\) −13.5335 −0.496495 −0.248248 0.968697i \(-0.579855\pi\)
−0.248248 + 0.968697i \(0.579855\pi\)
\(744\) 0 0
\(745\) −5.39804 + 9.34968i −0.197769 + 0.342546i
\(746\) 0 0
\(747\) −14.8618 22.7734i −0.543763 0.833237i
\(748\) 0 0
\(749\) −4.03437 10.9848i −0.147413 0.401375i
\(750\) 0 0
\(751\) −13.7335 + 7.92906i −0.501144 + 0.289336i −0.729186 0.684316i \(-0.760101\pi\)
0.228042 + 0.973651i \(0.426768\pi\)
\(752\) 0 0
\(753\) 4.92642 + 16.5633i 0.179529 + 0.603600i
\(754\) 0 0
\(755\) 13.8366i 0.503566i
\(756\) 0 0
\(757\) 41.0141i 1.49068i 0.666683 + 0.745341i \(0.267713\pi\)
−0.666683 + 0.745341i \(0.732287\pi\)
\(758\) 0 0
\(759\) −5.40424 18.1698i −0.196162 0.659521i
\(760\) 0 0
\(761\) −8.79472 + 5.07763i −0.318808 + 0.184064i −0.650861 0.759197i \(-0.725592\pi\)
0.332053 + 0.943261i \(0.392259\pi\)
\(762\) 0 0
\(763\) −13.7961 + 16.5390i −0.499452 + 0.598753i
\(764\) 0 0
\(765\) −1.15286 1.76659i −0.0416818 0.0638712i
\(766\) 0 0
\(767\) −4.83937 + 8.38203i −0.174740 + 0.302658i
\(768\) 0 0
\(769\) 15.2996 0.551719 0.275859 0.961198i \(-0.411038\pi\)
0.275859 + 0.961198i \(0.411038\pi\)
\(770\) 0 0
\(771\) 23.5903 24.9148i 0.849585 0.897283i
\(772\) 0 0
\(773\) −18.3453 + 31.7750i −0.659835 + 1.14287i 0.320823 + 0.947139i \(0.396040\pi\)
−0.980658 + 0.195728i \(0.937293\pi\)
\(774\) 0 0
\(775\) 1.77998 1.02767i 0.0639388 0.0369151i
\(776\) 0 0
\(777\) 2.99427 + 4.01262i 0.107419 + 0.143952i
\(778\) 0 0
\(779\) −17.1727 + 9.91466i −0.615276 + 0.355230i
\(780\) 0 0
\(781\) 9.24099 + 5.33529i 0.330669 + 0.190912i
\(782\) 0 0
\(783\) −23.6709 + 27.9040i −0.845927 + 0.997208i
\(784\) 0 0
\(785\) 5.27773i 0.188370i
\(786\) 0 0
\(787\) −14.6430 + 25.3624i −0.521965 + 0.904071i 0.477708 + 0.878519i \(0.341468\pi\)
−0.999673 + 0.0255520i \(0.991866\pi\)
\(788\) 0 0
\(789\) 2.75103 11.5156i 0.0979393 0.409965i
\(790\) 0 0
\(791\) 34.9321 + 6.05473i 1.24204 + 0.215281i
\(792\) 0 0
\(793\) −3.42962 5.94027i −0.121789 0.210945i
\(794\) 0 0
\(795\) 32.1193 9.55326i 1.13915 0.338819i
\(796\) 0 0
\(797\) 18.4577 0.653805 0.326903 0.945058i \(-0.393995\pi\)
0.326903 + 0.945058i \(0.393995\pi\)
\(798\) 0 0
\(799\) 1.45105i 0.0513345i
\(800\) 0 0
\(801\) 7.16471 14.1396i 0.253153 0.499599i
\(802\) 0 0
\(803\) −13.0260 + 7.52059i −0.459679 + 0.265396i
\(804\) 0 0
\(805\) 28.9976 + 24.1885i 1.02203 + 0.852533i
\(806\) 0 0
\(807\) 9.72510 40.7084i 0.342340 1.43301i
\(808\) 0 0
\(809\) 12.9060 + 7.45126i 0.453750 + 0.261972i 0.709412 0.704794i \(-0.248960\pi\)
−0.255663 + 0.966766i \(0.582294\pi\)
\(810\) 0 0
\(811\) −29.7496 −1.04465 −0.522325 0.852747i \(-0.674935\pi\)
−0.522325 + 0.852747i \(0.674935\pi\)
\(812\) 0 0
\(813\) −21.0161 + 22.1960i −0.737067 + 0.778448i
\(814\) 0 0
\(815\) 9.74341 16.8761i 0.341297 0.591143i
\(816\) 0 0
\(817\) −33.5067 58.0353i −1.17225 2.03040i
\(818\) 0 0
\(819\) −11.3790 + 4.89935i −0.397614 + 0.171197i
\(820\) 0 0
\(821\) 7.25813 + 12.5715i 0.253311 + 0.438747i 0.964435 0.264319i \(-0.0851472\pi\)
−0.711125 + 0.703066i \(0.751814\pi\)
\(822\) 0 0
\(823\) 42.5817 + 24.5846i 1.48431 + 0.856965i 0.999841 0.0178459i \(-0.00568083\pi\)
0.484465 + 0.874810i \(0.339014\pi\)
\(824\) 0 0
\(825\) −0.456939 + 0.482593i −0.0159086 + 0.0168017i
\(826\) 0 0
\(827\) 0.00653186i 0.000227135i 1.00000 0.000113567i \(3.61496e-5\pi\)
−1.00000 0.000113567i \(0.999964\pi\)
\(828\) 0 0
\(829\) 7.61159 + 4.39455i 0.264361 + 0.152629i 0.626322 0.779564i \(-0.284559\pi\)
−0.361961 + 0.932193i \(0.617893\pi\)
\(830\) 0 0
\(831\) −25.1425 6.00645i −0.872182 0.208361i
\(832\) 0 0
\(833\) 1.45853 + 1.71781i 0.0505350 + 0.0595184i
\(834\) 0 0
\(835\) −7.65719 13.2626i −0.264988 0.458973i
\(836\) 0 0
\(837\) −43.8925 + 15.7091i −1.51715 + 0.542985i
\(838\) 0 0
\(839\) 35.4452 1.22371 0.611853 0.790972i \(-0.290425\pi\)
0.611853 + 0.790972i \(0.290425\pi\)
\(840\) 0 0
\(841\) 20.5905 0.710017
\(842\) 0 0
\(843\) −6.85818 23.0581i −0.236208 0.794164i
\(844\) 0 0
\(845\) 11.5369 + 19.9825i 0.396881 + 0.687417i
\(846\) 0 0
\(847\) −20.3518 + 7.47458i −0.699296 + 0.256829i
\(848\) 0 0
\(849\) 2.32511 9.73270i 0.0797975 0.334025i
\(850\) 0 0
\(851\) 6.18262 + 3.56954i 0.211937 + 0.122362i
\(852\) 0 0
\(853\) 23.8784i 0.817581i 0.912628 + 0.408791i \(0.134049\pi\)
−0.912628 + 0.408791i \(0.865951\pi\)
\(854\) 0 0
\(855\) −2.05562 37.6138i −0.0703006 1.28637i
\(856\) 0 0
\(857\) 46.6784 + 26.9498i 1.59451 + 0.920588i 0.992520 + 0.122081i \(0.0389567\pi\)
0.601985 + 0.798507i \(0.294377\pi\)
\(858\) 0 0
\(859\) −9.18799 15.9141i −0.313490 0.542981i 0.665625 0.746286i \(-0.268165\pi\)
−0.979115 + 0.203305i \(0.934832\pi\)
\(860\) 0 0
\(861\) 15.6979 1.85262i 0.534982 0.0631371i
\(862\) 0 0
\(863\) 24.6737 + 42.7360i 0.839901 + 1.45475i 0.889977 + 0.456006i \(0.150721\pi\)
−0.0500753 + 0.998745i \(0.515946\pi\)
\(864\) 0 0
\(865\) 15.5444 26.9236i 0.528524 0.915431i
\(866\) 0 0
\(867\) 21.2509 + 20.1212i 0.721717 + 0.683352i
\(868\) 0 0
\(869\) 6.93929 0.235399
\(870\) 0 0
\(871\) 1.93589 + 1.11768i 0.0655950 + 0.0378713i
\(872\) 0 0
\(873\) 10.6311 6.93776i 0.359808 0.234808i
\(874\) 0 0
\(875\) 5.16082 29.7747i 0.174467 1.00657i
\(876\) 0 0
\(877\) 51.2316 29.5786i 1.72997 0.998797i 0.840467 0.541863i \(-0.182281\pi\)
0.889500 0.456935i \(-0.151053\pi\)
\(878\) 0 0
\(879\) 25.9620 7.72187i 0.875675 0.260452i
\(880\) 0 0
\(881\) 51.0955i 1.72145i −0.509068 0.860726i \(-0.670010\pi\)
0.509068 0.860726i \(-0.329990\pi\)
\(882\) 0 0
\(883\) −10.4148 −0.350486 −0.175243 0.984525i \(-0.556071\pi\)
−0.175243 + 0.984525i \(0.556071\pi\)
\(884\) 0 0
\(885\) 6.68799 + 22.4859i 0.224814 + 0.755856i
\(886\) 0 0
\(887\) −12.2631 21.2404i −0.411756 0.713183i 0.583326 0.812238i \(-0.301751\pi\)
−0.995082 + 0.0990557i \(0.968418\pi\)
\(888\) 0 0
\(889\) −32.6789 5.66419i −1.09601 0.189971i
\(890\) 0 0
\(891\) 12.1556 8.91490i 0.407228 0.298660i
\(892\) 0 0
\(893\) 12.9560 22.4405i 0.433556 0.750942i
\(894\) 0 0
\(895\) 2.71416i 0.0907242i
\(896\) 0 0
\(897\) −12.1458 + 12.8277i −0.405535 + 0.428303i
\(898\) 0 0
\(899\) 54.7155 + 31.5900i 1.82487 + 1.05359i
\(900\) 0 0
\(901\) 2.46944 1.42573i 0.0822688 0.0474979i
\(902\) 0 0
\(903\) 6.26095 + 53.0511i 0.208351 + 1.76543i
\(904\) 0 0
\(905\) −39.6267 + 22.8785i −1.31724 + 0.760507i
\(906\) 0 0
\(907\) −14.6718 + 25.4124i −0.487170 + 0.843803i −0.999891 0.0147518i \(-0.995304\pi\)
0.512721 + 0.858555i \(0.328638\pi\)
\(908\) 0 0
\(909\) −0.809158 14.8060i −0.0268381 0.491086i
\(910\) 0 0
\(911\) −21.9953 −0.728738 −0.364369 0.931255i \(-0.618715\pi\)
−0.364369 + 0.931255i \(0.618715\pi\)
\(912\) 0 0
\(913\) 7.59124 13.1484i 0.251233 0.435149i
\(914\) 0 0
\(915\) −16.1705 3.86306i −0.534579 0.127709i
\(916\) 0 0
\(917\) 15.6032 + 42.4845i 0.515264 + 1.40296i
\(918\) 0 0
\(919\) 32.9464 19.0216i 1.08680 0.627464i 0.154077 0.988059i \(-0.450759\pi\)
0.932723 + 0.360594i \(0.117426\pi\)
\(920\) 0 0
\(921\) 11.9514 3.55470i 0.393811 0.117131i
\(922\) 0 0
\(923\) 9.94388i 0.327307i
\(924\) 0 0
\(925\) 0.250290i 0.00822948i
\(926\) 0 0
\(927\) −24.8669 + 49.0751i −0.816737 + 1.61184i
\(928\) 0 0
\(929\) 26.6079 15.3621i 0.872978 0.504014i 0.00464125 0.999989i \(-0.498523\pi\)
0.868337 + 0.495975i \(0.165189\pi\)
\(930\) 0 0
\(931\) 7.21830 + 39.5886i 0.236570 + 1.29746i
\(932\) 0 0
\(933\) 3.50209 14.6594i 0.114653 0.479928i
\(934\) 0 0
\(935\) 0.588871 1.01995i 0.0192581 0.0333561i
\(936\) 0 0
\(937\) 37.2804 1.21790 0.608949 0.793210i \(-0.291592\pi\)
0.608949 + 0.793210i \(0.291592\pi\)
\(938\) 0 0
\(939\) −24.0863 22.8059i −0.786027 0.744243i
\(940\) 0 0
\(941\) 16.0848 27.8596i 0.524348 0.908198i −0.475250 0.879851i \(-0.657642\pi\)
0.999598 0.0283471i \(-0.00902436\pi\)
\(942\) 0 0
\(943\) 19.5194 11.2695i 0.635640 0.366987i
\(944\) 0 0
\(945\) −10.3398 + 28.1920i −0.336353 + 0.917087i
\(946\) 0 0
\(947\) −33.3248 + 19.2401i −1.08291 + 0.625219i −0.931680 0.363279i \(-0.881657\pi\)
−0.151231 + 0.988498i \(0.548324\pi\)
\(948\) 0 0
\(949\) 12.1389 + 7.00842i 0.394046 + 0.227503i
\(950\) 0 0
\(951\) −4.60773 4.36279i −0.149416 0.141473i
\(952\) 0 0
\(953\) 37.1213i 1.20248i −0.799070 0.601238i \(-0.794674\pi\)
0.799070 0.601238i \(-0.205326\pi\)
\(954\) 0 0
\(955\) 26.6737 46.2002i 0.863140 1.49500i
\(956\) 0 0
\(957\) −19.8702 4.74692i −0.642312 0.153446i
\(958\) 0 0
\(959\) −35.1071 + 42.0871i −1.13367 + 1.35906i
\(960\) 0 0
\(961\) 24.7469 + 42.8628i 0.798286 + 1.38267i
\(962\) 0 0
\(963\) 5.99757 11.8363i 0.193269 0.381418i
\(964\) 0 0
\(965\) 0.0289458 0.000931799
\(966\) 0 0
\(967\) 28.7342i 0.924030i −0.886872 0.462015i \(-0.847127\pi\)
0.886872 0.462015i \(-0.152873\pi\)
\(968\) 0 0
\(969\) −0.913833 3.07243i −0.0293565 0.0987006i
\(970\) 0 0
\(971\) 17.2557 9.96261i 0.553763 0.319715i −0.196875 0.980429i \(-0.563079\pi\)
0.750638 + 0.660713i \(0.229746\pi\)
\(972\) 0 0
\(973\) −0.574998 + 3.31739i −0.0184336 + 0.106351i
\(974\) 0 0
\(975\) 0.602385 + 0.143908i 0.0192918 + 0.00460874i
\(976\) 0 0
\(977\) −11.6105 6.70332i −0.371453 0.214458i 0.302640 0.953105i \(-0.402132\pi\)
−0.674093 + 0.738647i \(0.735465\pi\)
\(978\) 0 0
\(979\) 8.84986 0.282843
\(980\) 0 0
\(981\) −24.3851 + 1.33266i −0.778555 + 0.0425484i
\(982\) 0 0
\(983\) 10.2774 17.8010i 0.327799 0.567765i −0.654276 0.756256i \(-0.727026\pi\)
0.982075 + 0.188491i \(0.0603597\pi\)
\(984\) 0 0
\(985\) 7.08155 + 12.2656i 0.225637 + 0.390814i
\(986\) 0 0
\(987\) −16.5545 + 12.3532i −0.526936 + 0.393206i
\(988\) 0 0
\(989\) 38.0856 + 65.9661i 1.21105 + 2.09760i
\(990\) 0 0
\(991\) 4.87181 + 2.81274i 0.154758 + 0.0893497i 0.575379 0.817887i \(-0.304854\pi\)
−0.420621 + 0.907236i \(0.638188\pi\)
\(992\) 0 0
\(993\) 13.6177 + 12.8938i 0.432144 + 0.409172i
\(994\) 0 0
\(995\) 11.2743i 0.357420i
\(996\) 0 0
\(997\) −2.03245 1.17343i −0.0643683 0.0371631i 0.467470 0.884009i \(-0.345165\pi\)
−0.531839 + 0.846846i \(0.678499\pi\)
\(998\) 0 0
\(999\) −1.01583 + 5.58541i −0.0321394 + 0.176715i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 672.2.bd.a.431.4 56
3.2 odd 2 inner 672.2.bd.a.431.17 56
4.3 odd 2 168.2.v.a.11.2 56
7.2 even 3 inner 672.2.bd.a.527.18 56
8.3 odd 2 inner 672.2.bd.a.431.3 56
8.5 even 2 168.2.v.a.11.9 yes 56
12.11 even 2 168.2.v.a.11.27 yes 56
21.2 odd 6 inner 672.2.bd.a.527.3 56
24.5 odd 2 168.2.v.a.11.20 yes 56
24.11 even 2 inner 672.2.bd.a.431.18 56
28.23 odd 6 168.2.v.a.107.20 yes 56
56.37 even 6 168.2.v.a.107.27 yes 56
56.51 odd 6 inner 672.2.bd.a.527.17 56
84.23 even 6 168.2.v.a.107.9 yes 56
168.107 even 6 inner 672.2.bd.a.527.4 56
168.149 odd 6 168.2.v.a.107.2 yes 56
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
168.2.v.a.11.2 56 4.3 odd 2
168.2.v.a.11.9 yes 56 8.5 even 2
168.2.v.a.11.20 yes 56 24.5 odd 2
168.2.v.a.11.27 yes 56 12.11 even 2
168.2.v.a.107.2 yes 56 168.149 odd 6
168.2.v.a.107.9 yes 56 84.23 even 6
168.2.v.a.107.20 yes 56 28.23 odd 6
168.2.v.a.107.27 yes 56 56.37 even 6
672.2.bd.a.431.3 56 8.3 odd 2 inner
672.2.bd.a.431.4 56 1.1 even 1 trivial
672.2.bd.a.431.17 56 3.2 odd 2 inner
672.2.bd.a.431.18 56 24.11 even 2 inner
672.2.bd.a.527.3 56 21.2 odd 6 inner
672.2.bd.a.527.4 56 168.107 even 6 inner
672.2.bd.a.527.17 56 56.51 odd 6 inner
672.2.bd.a.527.18 56 7.2 even 3 inner