Properties

Label 2-672-4.3-c2-0-21
Degree $2$
Conductor $672$
Sign $-0.707 + 0.707i$
Analytic cond. $18.3106$
Root an. cond. $4.27909$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.73i·3-s + 1.08·5-s − 2.64i·7-s − 2.99·9-s − 3.75i·11-s − 10.2·13-s + 1.88i·15-s − 19.5·17-s − 9.33i·19-s + 4.58·21-s − 1.06i·23-s − 23.8·25-s − 5.19i·27-s − 0.156·29-s + 15.1i·31-s + ⋯
L(s)  = 1  + 0.577i·3-s + 0.217·5-s − 0.377i·7-s − 0.333·9-s − 0.341i·11-s − 0.787·13-s + 0.125i·15-s − 1.15·17-s − 0.491i·19-s + 0.218·21-s − 0.0462i·23-s − 0.952·25-s − 0.192i·27-s − 0.00540·29-s + 0.487i·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 672 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.707 + 0.707i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 672 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.707 + 0.707i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(672\)    =    \(2^{5} \cdot 3 \cdot 7\)
Sign: $-0.707 + 0.707i$
Analytic conductor: \(18.3106\)
Root analytic conductor: \(4.27909\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{672} (127, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 672,\ (\ :1),\ -0.707 + 0.707i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.3895063779\)
\(L(\frac12)\) \(\approx\) \(0.3895063779\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - 1.73iT \)
7 \( 1 + 2.64iT \)
good5 \( 1 - 1.08T + 25T^{2} \)
11 \( 1 + 3.75iT - 121T^{2} \)
13 \( 1 + 10.2T + 169T^{2} \)
17 \( 1 + 19.5T + 289T^{2} \)
19 \( 1 + 9.33iT - 361T^{2} \)
23 \( 1 + 1.06iT - 529T^{2} \)
29 \( 1 + 0.156T + 841T^{2} \)
31 \( 1 - 15.1iT - 961T^{2} \)
37 \( 1 + 20.0T + 1.36e3T^{2} \)
41 \( 1 + 43.2T + 1.68e3T^{2} \)
43 \( 1 + 21.0iT - 1.84e3T^{2} \)
47 \( 1 + 21.8iT - 2.20e3T^{2} \)
53 \( 1 - 30.6T + 2.80e3T^{2} \)
59 \( 1 + 59.5iT - 3.48e3T^{2} \)
61 \( 1 + 58.7T + 3.72e3T^{2} \)
67 \( 1 + 84.8iT - 4.48e3T^{2} \)
71 \( 1 + 12.1iT - 5.04e3T^{2} \)
73 \( 1 + 48.8T + 5.32e3T^{2} \)
79 \( 1 - 106. iT - 6.24e3T^{2} \)
83 \( 1 + 128. iT - 6.88e3T^{2} \)
89 \( 1 - 100.T + 7.92e3T^{2} \)
97 \( 1 + 101.T + 9.40e3T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.01131790670100665334506842938, −9.190189255623221359570377629380, −8.397992631254137101522585787946, −7.28613672527585826505093666292, −6.41538130825814747978857733884, −5.27176386577211730897443187749, −4.44928951137695548684045828961, −3.34778508429709977583931786418, −2.06818242760956466677166614096, −0.12871883228029944496751002013, 1.73865454077464573299281120277, 2.68731140514758713753568139053, 4.17255738505170895016498164663, 5.29192175731649400237073299840, 6.22960163342259261590181827156, 7.10699695096288397269573672522, 7.954869099985049841923537714136, 8.896699141819923601516681544670, 9.710078996135071020645230246254, 10.59696412099043406696139606946

Graph of the $Z$-function along the critical line