L(s) = 1 | + 1.73i·3-s + 1.08·5-s − 2.64i·7-s − 2.99·9-s − 3.75i·11-s − 10.2·13-s + 1.88i·15-s − 19.5·17-s − 9.33i·19-s + 4.58·21-s − 1.06i·23-s − 23.8·25-s − 5.19i·27-s − 0.156·29-s + 15.1i·31-s + ⋯ |
L(s) = 1 | + 0.577i·3-s + 0.217·5-s − 0.377i·7-s − 0.333·9-s − 0.341i·11-s − 0.787·13-s + 0.125i·15-s − 1.15·17-s − 0.491i·19-s + 0.218·21-s − 0.0462i·23-s − 0.952·25-s − 0.192i·27-s − 0.00540·29-s + 0.487i·31-s + ⋯ |
Λ(s)=(=(672s/2ΓC(s)L(s)(−0.707+0.707i)Λ(3−s)
Λ(s)=(=(672s/2ΓC(s+1)L(s)(−0.707+0.707i)Λ(1−s)
Degree: |
2 |
Conductor: |
672
= 25⋅3⋅7
|
Sign: |
−0.707+0.707i
|
Analytic conductor: |
18.3106 |
Root analytic conductor: |
4.27909 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ672(127,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 672, ( :1), −0.707+0.707i)
|
Particular Values
L(23) |
≈ |
0.3895063779 |
L(21) |
≈ |
0.3895063779 |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1−1.73iT |
| 7 | 1+2.64iT |
good | 5 | 1−1.08T+25T2 |
| 11 | 1+3.75iT−121T2 |
| 13 | 1+10.2T+169T2 |
| 17 | 1+19.5T+289T2 |
| 19 | 1+9.33iT−361T2 |
| 23 | 1+1.06iT−529T2 |
| 29 | 1+0.156T+841T2 |
| 31 | 1−15.1iT−961T2 |
| 37 | 1+20.0T+1.36e3T2 |
| 41 | 1+43.2T+1.68e3T2 |
| 43 | 1+21.0iT−1.84e3T2 |
| 47 | 1+21.8iT−2.20e3T2 |
| 53 | 1−30.6T+2.80e3T2 |
| 59 | 1+59.5iT−3.48e3T2 |
| 61 | 1+58.7T+3.72e3T2 |
| 67 | 1+84.8iT−4.48e3T2 |
| 71 | 1+12.1iT−5.04e3T2 |
| 73 | 1+48.8T+5.32e3T2 |
| 79 | 1−106.iT−6.24e3T2 |
| 83 | 1+128.iT−6.88e3T2 |
| 89 | 1−100.T+7.92e3T2 |
| 97 | 1+101.T+9.40e3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.01131790670100665334506842938, −9.190189255623221359570377629380, −8.397992631254137101522585787946, −7.28613672527585826505093666292, −6.41538130825814747978857733884, −5.27176386577211730897443187749, −4.44928951137695548684045828961, −3.34778508429709977583931786418, −2.06818242760956466677166614096, −0.12871883228029944496751002013,
1.73865454077464573299281120277, 2.68731140514758713753568139053, 4.17255738505170895016498164663, 5.29192175731649400237073299840, 6.22960163342259261590181827156, 7.10699695096288397269573672522, 7.954869099985049841923537714136, 8.896699141819923601516681544670, 9.710078996135071020645230246254, 10.59696412099043406696139606946