Properties

Label 672.3.m.a
Level 672672
Weight 33
Character orbit 672.m
Analytic conductor 18.31118.311
Analytic rank 00
Dimension 88
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [672,3,Mod(127,672)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(672, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 0, 0]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("672.127");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: N N == 672=2537 672 = 2^{5} \cdot 3 \cdot 7
Weight: k k == 3 3
Character orbit: [χ][\chi] == 672.m (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 18.310673765018.3106737650
Analytic rank: 00
Dimension: 88
Coefficient field: 8.0.49787136.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x8+3x6+5x4+12x2+16 x^{8} + 3x^{6} + 5x^{4} + 12x^{2} + 16 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 212 2^{12}
Twist minimal: yes
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β71,\beta_1,\ldots,\beta_{7} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β5q3+(β4+2)q5β6q73q9+(2β62β5+β1)q11+(2β7+β4β28)q13+(2β5+β3+β1)q15++(6β6+6β53β1)q99+O(q100) q + \beta_{5} q^{3} + (\beta_{4} + 2) q^{5} - \beta_{6} q^{7} - 3 q^{9} + (2 \beta_{6} - 2 \beta_{5} + \beta_1) q^{11} + (2 \beta_{7} + \beta_{4} - \beta_{2} - 8) q^{13} + (2 \beta_{5} + \beta_{3} + \beta_1) q^{15}+ \cdots + ( - 6 \beta_{6} + 6 \beta_{5} - 3 \beta_1) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 8q+16q524q964q13+64q1788q25+64q29+48q33+128q3748q4556q49160q53+48q57+32q6132q65144q69112q73+112q77+240q97+O(q100) 8 q + 16 q^{5} - 24 q^{9} - 64 q^{13} + 64 q^{17} - 88 q^{25} + 64 q^{29} + 48 q^{33} + 128 q^{37} - 48 q^{45} - 56 q^{49} - 160 q^{53} + 48 q^{57} + 32 q^{61} - 32 q^{65} - 144 q^{69} - 112 q^{73} + 112 q^{77}+ \cdots - 240 q^{97}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x8+3x6+5x4+12x2+16 x^{8} + 3x^{6} + 5x^{4} + 12x^{2} + 16 : Copy content Toggle raw display

β1\beta_{1}== (ν7+5ν5+15ν3+42ν)/10 ( \nu^{7} + 5\nu^{5} + 15\nu^{3} + 42\nu ) / 10 Copy content Toggle raw display
β2\beta_{2}== ν5ν3+ν -\nu^{5} - \nu^{3} + \nu Copy content Toggle raw display
β3\beta_{3}== (3ν7+5ν55ν3+16ν)/10 ( 3\nu^{7} + 5\nu^{5} - 5\nu^{3} + 16\nu ) / 10 Copy content Toggle raw display
β4\beta_{4}== (ν7ν53ν36ν)/2 ( -\nu^{7} - \nu^{5} - 3\nu^{3} - 6\nu ) / 2 Copy content Toggle raw display
β5\beta_{5}== (3ν6+5ν4+15ν2+26)/10 ( 3\nu^{6} + 5\nu^{4} + 15\nu^{2} + 26 ) / 10 Copy content Toggle raw display
β6\beta_{6}== (2ν69)/5 ( -2\nu^{6} - 9 ) / 5 Copy content Toggle raw display
β7\beta_{7}== (ν6+3ν4+ν2+6)/2 ( \nu^{6} + 3\nu^{4} + \nu^{2} + 6 ) / 2 Copy content Toggle raw display
ν\nu== (β4+β3+β2+2β1)/8 ( \beta_{4} + \beta_{3} + \beta_{2} + 2\beta_1 ) / 8 Copy content Toggle raw display
ν2\nu^{2}== (β7+β6+3β53)/4 ( -\beta_{7} + \beta_{6} + 3\beta_{5} - 3 ) / 4 Copy content Toggle raw display
ν3\nu^{3}== (3β45β3β2)/8 ( -3\beta_{4} - 5\beta_{3} - \beta_{2} ) / 8 Copy content Toggle raw display
ν4\nu^{4}== (3β7+3β6β51)/4 ( 3\beta_{7} + 3\beta_{6} - \beta_{5} - 1 ) / 4 Copy content Toggle raw display
ν5\nu^{5}== (2β4+3β33β2+β1)/4 ( 2\beta_{4} + 3\beta_{3} - 3\beta_{2} + \beta_1 ) / 4 Copy content Toggle raw display
ν6\nu^{6}== (5β69)/2 ( -5\beta_{6} - 9 ) / 2 Copy content Toggle raw display
ν7\nu^{7}== (17β4+3β3+3β214β1)/8 ( -17\beta_{4} + 3\beta_{3} + 3\beta_{2} - 14\beta_1 ) / 8 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/672Z)×\left(\mathbb{Z}/672\mathbb{Z}\right)^\times.

nn 127127 421421 449449 577577
χ(n)\chi(n) 1-1 11 11 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
127.1
−0.228425 + 1.39564i
−1.09445 + 0.895644i
1.09445 0.895644i
0.228425 1.39564i
−0.228425 1.39564i
−1.09445 0.895644i
1.09445 + 0.895644i
0.228425 + 1.39564i
0 1.73205i 0 −2.37780 0 2.64575i 0 −3.00000 0
127.2 0 1.73205i 0 1.08630 0 2.64575i 0 −3.00000 0
127.3 0 1.73205i 0 2.91370 0 2.64575i 0 −3.00000 0
127.4 0 1.73205i 0 6.37780 0 2.64575i 0 −3.00000 0
127.5 0 1.73205i 0 −2.37780 0 2.64575i 0 −3.00000 0
127.6 0 1.73205i 0 1.08630 0 2.64575i 0 −3.00000 0
127.7 0 1.73205i 0 2.91370 0 2.64575i 0 −3.00000 0
127.8 0 1.73205i 0 6.37780 0 2.64575i 0 −3.00000 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 127.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 672.3.m.a 8
3.b odd 2 1 2016.3.m.b 8
4.b odd 2 1 inner 672.3.m.a 8
8.b even 2 1 1344.3.m.d 8
8.d odd 2 1 1344.3.m.d 8
12.b even 2 1 2016.3.m.b 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
672.3.m.a 8 1.a even 1 1 trivial
672.3.m.a 8 4.b odd 2 1 inner
1344.3.m.d 8 8.b even 2 1
1344.3.m.d 8 8.d odd 2 1
2016.3.m.b 8 3.b odd 2 1
2016.3.m.b 8 12.b even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T548T53+4T52+48T548 T_{5}^{4} - 8T_{5}^{3} + 4T_{5}^{2} + 48T_{5} - 48 acting on S3new(672,[χ])S_{3}^{\mathrm{new}}(672, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T8 T^{8} Copy content Toggle raw display
33 (T2+3)4 (T^{2} + 3)^{4} Copy content Toggle raw display
55 (T48T3+4T2+48)2 (T^{4} - 8 T^{3} + 4 T^{2} + \cdots - 48)^{2} Copy content Toggle raw display
77 (T2+7)4 (T^{2} + 7)^{4} Copy content Toggle raw display
1111 T8+248T6++3154176 T^{8} + 248 T^{6} + \cdots + 3154176 Copy content Toggle raw display
1313 (T4+32T3+11504)2 (T^{4} + 32 T^{3} + \cdots - 11504)^{2} Copy content Toggle raw display
1717 (T432T3+77808)2 (T^{4} - 32 T^{3} + \cdots - 77808)^{2} Copy content Toggle raw display
1919 T8+512T6++9437184 T^{8} + 512 T^{6} + \cdots + 9437184 Copy content Toggle raw display
2323 T8+1336T6++9535744 T^{8} + 1336 T^{6} + \cdots + 9535744 Copy content Toggle raw display
2929 (T432T3++6736)2 (T^{4} - 32 T^{3} + \cdots + 6736)^{2} Copy content Toggle raw display
3131 T8+1792T6++144769024 T^{8} + 1792 T^{6} + \cdots + 144769024 Copy content Toggle raw display
3737 (T464T3++751248)2 (T^{4} - 64 T^{3} + \cdots + 751248)^{2} Copy content Toggle raw display
4141 (T41340T2+81392)2 (T^{4} - 1340 T^{2} + \cdots - 81392)^{2} Copy content Toggle raw display
4343 T8++1503036768256 T^{8} + \cdots + 1503036768256 Copy content Toggle raw display
4747 T8++3086795997184 T^{8} + \cdots + 3086795997184 Copy content Toggle raw display
5353 (T4+80T3++5454096)2 (T^{4} + 80 T^{3} + \cdots + 5454096)^{2} Copy content Toggle raw display
5959 T8++247398169378816 T^{8} + \cdots + 247398169378816 Copy content Toggle raw display
6161 (T416T3++12815056)2 (T^{4} - 16 T^{3} + \cdots + 12815056)^{2} Copy content Toggle raw display
6767 T8++18 ⁣ ⁣56 T^{8} + \cdots + 18\!\cdots\!56 Copy content Toggle raw display
7171 T8++34882285824 T^{8} + \cdots + 34882285824 Copy content Toggle raw display
7373 (T4+56T3++1119696)2 (T^{4} + 56 T^{3} + \cdots + 1119696)^{2} Copy content Toggle raw display
7979 T8++26 ⁣ ⁣44 T^{8} + \cdots + 26\!\cdots\!44 Copy content Toggle raw display
8383 T8++20 ⁣ ⁣24 T^{8} + \cdots + 20\!\cdots\!24 Copy content Toggle raw display
8989 (T4176T3++7414800)2 (T^{4} - 176 T^{3} + \cdots + 7414800)^{2} Copy content Toggle raw display
9797 (T4+120T3++11486416)2 (T^{4} + 120 T^{3} + \cdots + 11486416)^{2} Copy content Toggle raw display
show more
show less