L(s) = 1 | − 3-s − 3·5-s + 2·7-s − 9-s + 2·13-s + 3·15-s + 4·17-s + 2·19-s − 2·21-s − 7·23-s + 25-s + 4·29-s − 17·31-s − 6·35-s + 5·37-s − 2·39-s + 20·41-s − 8·43-s + 3·45-s + 4·47-s + 3·49-s − 4·51-s + 8·53-s − 2·57-s − 15·59-s − 8·61-s − 2·63-s + ⋯ |
L(s) = 1 | − 0.577·3-s − 1.34·5-s + 0.755·7-s − 1/3·9-s + 0.554·13-s + 0.774·15-s + 0.970·17-s + 0.458·19-s − 0.436·21-s − 1.45·23-s + 1/5·25-s + 0.742·29-s − 3.05·31-s − 1.01·35-s + 0.821·37-s − 0.320·39-s + 3.12·41-s − 1.21·43-s + 0.447·45-s + 0.583·47-s + 3/7·49-s − 0.560·51-s + 1.09·53-s − 0.264·57-s − 1.95·59-s − 1.02·61-s − 0.251·63-s + ⋯ |
Λ(s)=(=(45914176s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(45914176s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
45914176
= 26⋅72⋅114
|
Sign: |
1
|
Analytic conductor: |
2927.52 |
Root analytic conductor: |
7.35572 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
2
|
Selberg data: |
(4, 45914176, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 7 | C1 | (1−T)2 |
| 11 | | 1 |
good | 3 | D4 | 1+T+2T2+pT3+p2T4 |
| 5 | C22 | 1+3T+8T2+3pT3+p2T4 |
| 13 | C4 | 1−2T+10T2−2pT3+p2T4 |
| 17 | C2 | (1−2T+pT2)2 |
| 19 | D4 | 1−2T+22T2−2pT3+p2T4 |
| 23 | D4 | 1+7T+54T2+7pT3+p2T4 |
| 29 | C2 | (1−2T+pT2)2 |
| 31 | D4 | 1+17T+130T2+17pT3+p2T4 |
| 37 | D4 | 1−5T+76T2−5pT3+p2T4 |
| 41 | C2 | (1−10T+pT2)2 |
| 43 | C2 | (1+4T+pT2)2 |
| 47 | D4 | 1−4T+30T2−4pT3+p2T4 |
| 53 | D4 | 1−8T+54T2−8pT3+p2T4 |
| 59 | D4 | 1+15T+170T2+15pT3+p2T4 |
| 61 | D4 | 1+8T+70T2+8pT3+p2T4 |
| 67 | D4 | 1+T+130T2+pT3+p2T4 |
| 71 | D4 | 1+5T+110T2+5pT3+p2T4 |
| 73 | D4 | 1+8T+94T2+8pT3+p2T4 |
| 79 | D4 | 1+2T+142T2+2pT3+p2T4 |
| 83 | C2 | (1−8T+pT2)2 |
| 89 | D4 | 1+21T+284T2+21pT3+p2T4 |
| 97 | D4 | 1−13T+232T2−13pT3+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.77267234439599828279592930901, −7.52807244477523977203161271699, −7.29786509197751487805626380862, −6.87206484717902914504319962563, −6.19944182302415655194744581296, −5.99982328875424387942571806626, −5.57960540307878158835134197716, −5.54285930231328525424556792476, −4.98929567408074377397827291788, −4.30888889305250728453149327499, −4.24815577570749729812860521751, −3.96871247875509430894966132480, −3.32702265487708601549182623848, −3.22644033963672142558675996812, −2.45615586923298913303358862890, −2.07656987191789601156764518747, −1.30942469510242811071717685274, −1.11032867739664032807415032881, 0, 0,
1.11032867739664032807415032881, 1.30942469510242811071717685274, 2.07656987191789601156764518747, 2.45615586923298913303358862890, 3.22644033963672142558675996812, 3.32702265487708601549182623848, 3.96871247875509430894966132480, 4.24815577570749729812860521751, 4.30888889305250728453149327499, 4.98929567408074377397827291788, 5.54285930231328525424556792476, 5.57960540307878158835134197716, 5.99982328875424387942571806626, 6.19944182302415655194744581296, 6.87206484717902914504319962563, 7.29786509197751487805626380862, 7.52807244477523977203161271699, 7.77267234439599828279592930901