Properties

Label 6776.2.a.l.1.1
Level $6776$
Weight $2$
Character 6776.1
Self dual yes
Analytic conductor $54.107$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [6776,2,Mod(1,6776)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6776, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("6776.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 6776 = 2^{3} \cdot 7 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6776.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(54.1066324096\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{17}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 616)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(2.56155\) of defining polynomial
Character \(\chi\) \(=\) 6776.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.56155 q^{3} +0.561553 q^{5} +1.00000 q^{7} +3.56155 q^{9} -3.12311 q^{13} -1.43845 q^{15} +2.00000 q^{17} +5.12311 q^{19} -2.56155 q^{21} -1.43845 q^{23} -4.68466 q^{25} -1.43845 q^{27} +2.00000 q^{29} -10.5616 q^{31} +0.561553 q^{35} +4.56155 q^{37} +8.00000 q^{39} +10.0000 q^{41} -4.00000 q^{43} +2.00000 q^{45} -6.24621 q^{47} +1.00000 q^{49} -5.12311 q^{51} -4.24621 q^{53} -13.1231 q^{57} -5.43845 q^{59} +4.24621 q^{61} +3.56155 q^{63} -1.75379 q^{65} -2.56155 q^{67} +3.68466 q^{69} +3.68466 q^{71} +4.24621 q^{73} +12.0000 q^{75} -5.12311 q^{79} -7.00000 q^{81} +8.00000 q^{83} +1.12311 q^{85} -5.12311 q^{87} -12.5616 q^{89} -3.12311 q^{91} +27.0540 q^{93} +2.87689 q^{95} +8.56155 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{3} - 3 q^{5} + 2 q^{7} + 3 q^{9} + 2 q^{13} - 7 q^{15} + 4 q^{17} + 2 q^{19} - q^{21} - 7 q^{23} + 3 q^{25} - 7 q^{27} + 4 q^{29} - 17 q^{31} - 3 q^{35} + 5 q^{37} + 16 q^{39} + 20 q^{41} - 8 q^{43}+ \cdots + 13 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.56155 −1.47891 −0.739457 0.673204i \(-0.764917\pi\)
−0.739457 + 0.673204i \(0.764917\pi\)
\(4\) 0 0
\(5\) 0.561553 0.251134 0.125567 0.992085i \(-0.459925\pi\)
0.125567 + 0.992085i \(0.459925\pi\)
\(6\) 0 0
\(7\) 1.00000 0.377964
\(8\) 0 0
\(9\) 3.56155 1.18718
\(10\) 0 0
\(11\) 0 0
\(12\) 0 0
\(13\) −3.12311 −0.866194 −0.433097 0.901347i \(-0.642579\pi\)
−0.433097 + 0.901347i \(0.642579\pi\)
\(14\) 0 0
\(15\) −1.43845 −0.371405
\(16\) 0 0
\(17\) 2.00000 0.485071 0.242536 0.970143i \(-0.422021\pi\)
0.242536 + 0.970143i \(0.422021\pi\)
\(18\) 0 0
\(19\) 5.12311 1.17532 0.587661 0.809108i \(-0.300049\pi\)
0.587661 + 0.809108i \(0.300049\pi\)
\(20\) 0 0
\(21\) −2.56155 −0.558977
\(22\) 0 0
\(23\) −1.43845 −0.299937 −0.149968 0.988691i \(-0.547917\pi\)
−0.149968 + 0.988691i \(0.547917\pi\)
\(24\) 0 0
\(25\) −4.68466 −0.936932
\(26\) 0 0
\(27\) −1.43845 −0.276829
\(28\) 0 0
\(29\) 2.00000 0.371391 0.185695 0.982607i \(-0.440546\pi\)
0.185695 + 0.982607i \(0.440546\pi\)
\(30\) 0 0
\(31\) −10.5616 −1.89691 −0.948455 0.316911i \(-0.897355\pi\)
−0.948455 + 0.316911i \(0.897355\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0.561553 0.0949197
\(36\) 0 0
\(37\) 4.56155 0.749915 0.374957 0.927042i \(-0.377657\pi\)
0.374957 + 0.927042i \(0.377657\pi\)
\(38\) 0 0
\(39\) 8.00000 1.28103
\(40\) 0 0
\(41\) 10.0000 1.56174 0.780869 0.624695i \(-0.214777\pi\)
0.780869 + 0.624695i \(0.214777\pi\)
\(42\) 0 0
\(43\) −4.00000 −0.609994 −0.304997 0.952353i \(-0.598656\pi\)
−0.304997 + 0.952353i \(0.598656\pi\)
\(44\) 0 0
\(45\) 2.00000 0.298142
\(46\) 0 0
\(47\) −6.24621 −0.911104 −0.455552 0.890209i \(-0.650558\pi\)
−0.455552 + 0.890209i \(0.650558\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) −5.12311 −0.717378
\(52\) 0 0
\(53\) −4.24621 −0.583262 −0.291631 0.956531i \(-0.594198\pi\)
−0.291631 + 0.956531i \(0.594198\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −13.1231 −1.73820
\(58\) 0 0
\(59\) −5.43845 −0.708026 −0.354013 0.935241i \(-0.615183\pi\)
−0.354013 + 0.935241i \(0.615183\pi\)
\(60\) 0 0
\(61\) 4.24621 0.543672 0.271836 0.962344i \(-0.412369\pi\)
0.271836 + 0.962344i \(0.412369\pi\)
\(62\) 0 0
\(63\) 3.56155 0.448713
\(64\) 0 0
\(65\) −1.75379 −0.217531
\(66\) 0 0
\(67\) −2.56155 −0.312943 −0.156472 0.987682i \(-0.550012\pi\)
−0.156472 + 0.987682i \(0.550012\pi\)
\(68\) 0 0
\(69\) 3.68466 0.443581
\(70\) 0 0
\(71\) 3.68466 0.437289 0.218644 0.975805i \(-0.429837\pi\)
0.218644 + 0.975805i \(0.429837\pi\)
\(72\) 0 0
\(73\) 4.24621 0.496981 0.248491 0.968634i \(-0.420065\pi\)
0.248491 + 0.968634i \(0.420065\pi\)
\(74\) 0 0
\(75\) 12.0000 1.38564
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −5.12311 −0.576394 −0.288197 0.957571i \(-0.593056\pi\)
−0.288197 + 0.957571i \(0.593056\pi\)
\(80\) 0 0
\(81\) −7.00000 −0.777778
\(82\) 0 0
\(83\) 8.00000 0.878114 0.439057 0.898459i \(-0.355313\pi\)
0.439057 + 0.898459i \(0.355313\pi\)
\(84\) 0 0
\(85\) 1.12311 0.121818
\(86\) 0 0
\(87\) −5.12311 −0.549255
\(88\) 0 0
\(89\) −12.5616 −1.33152 −0.665761 0.746165i \(-0.731893\pi\)
−0.665761 + 0.746165i \(0.731893\pi\)
\(90\) 0 0
\(91\) −3.12311 −0.327390
\(92\) 0 0
\(93\) 27.0540 2.80537
\(94\) 0 0
\(95\) 2.87689 0.295163
\(96\) 0 0
\(97\) 8.56155 0.869294 0.434647 0.900601i \(-0.356873\pi\)
0.434647 + 0.900601i \(0.356873\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −13.3693 −1.33030 −0.665148 0.746711i \(-0.731632\pi\)
−0.665148 + 0.746711i \(0.731632\pi\)
\(102\) 0 0
\(103\) 16.4924 1.62505 0.812523 0.582929i \(-0.198093\pi\)
0.812523 + 0.582929i \(0.198093\pi\)
\(104\) 0 0
\(105\) −1.43845 −0.140378
\(106\) 0 0
\(107\) −17.1231 −1.65535 −0.827677 0.561205i \(-0.810338\pi\)
−0.827677 + 0.561205i \(0.810338\pi\)
\(108\) 0 0
\(109\) 9.36932 0.897418 0.448709 0.893678i \(-0.351884\pi\)
0.448709 + 0.893678i \(0.351884\pi\)
\(110\) 0 0
\(111\) −11.6847 −1.10906
\(112\) 0 0
\(113\) 5.68466 0.534768 0.267384 0.963590i \(-0.413841\pi\)
0.267384 + 0.963590i \(0.413841\pi\)
\(114\) 0 0
\(115\) −0.807764 −0.0753244
\(116\) 0 0
\(117\) −11.1231 −1.02833
\(118\) 0 0
\(119\) 2.00000 0.183340
\(120\) 0 0
\(121\) 0 0
\(122\) 0 0
\(123\) −25.6155 −2.30967
\(124\) 0 0
\(125\) −5.43845 −0.486430
\(126\) 0 0
\(127\) 5.12311 0.454602 0.227301 0.973825i \(-0.427010\pi\)
0.227301 + 0.973825i \(0.427010\pi\)
\(128\) 0 0
\(129\) 10.2462 0.902129
\(130\) 0 0
\(131\) −13.1231 −1.14657 −0.573286 0.819356i \(-0.694331\pi\)
−0.573286 + 0.819356i \(0.694331\pi\)
\(132\) 0 0
\(133\) 5.12311 0.444230
\(134\) 0 0
\(135\) −0.807764 −0.0695213
\(136\) 0 0
\(137\) −2.31534 −0.197813 −0.0989065 0.995097i \(-0.531534\pi\)
−0.0989065 + 0.995097i \(0.531534\pi\)
\(138\) 0 0
\(139\) 5.12311 0.434536 0.217268 0.976112i \(-0.430285\pi\)
0.217268 + 0.976112i \(0.430285\pi\)
\(140\) 0 0
\(141\) 16.0000 1.34744
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 1.12311 0.0932688
\(146\) 0 0
\(147\) −2.56155 −0.211273
\(148\) 0 0
\(149\) 10.0000 0.819232 0.409616 0.912258i \(-0.365663\pi\)
0.409616 + 0.912258i \(0.365663\pi\)
\(150\) 0 0
\(151\) −5.12311 −0.416912 −0.208456 0.978032i \(-0.566844\pi\)
−0.208456 + 0.978032i \(0.566844\pi\)
\(152\) 0 0
\(153\) 7.12311 0.575869
\(154\) 0 0
\(155\) −5.93087 −0.476379
\(156\) 0 0
\(157\) 16.5616 1.32176 0.660878 0.750493i \(-0.270184\pi\)
0.660878 + 0.750493i \(0.270184\pi\)
\(158\) 0 0
\(159\) 10.8769 0.862594
\(160\) 0 0
\(161\) −1.43845 −0.113366
\(162\) 0 0
\(163\) 16.4924 1.29179 0.645893 0.763428i \(-0.276485\pi\)
0.645893 + 0.763428i \(0.276485\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 7.36932 0.570255 0.285127 0.958490i \(-0.407964\pi\)
0.285127 + 0.958490i \(0.407964\pi\)
\(168\) 0 0
\(169\) −3.24621 −0.249709
\(170\) 0 0
\(171\) 18.2462 1.39532
\(172\) 0 0
\(173\) 23.1231 1.75802 0.879009 0.476806i \(-0.158206\pi\)
0.879009 + 0.476806i \(0.158206\pi\)
\(174\) 0 0
\(175\) −4.68466 −0.354127
\(176\) 0 0
\(177\) 13.9309 1.04711
\(178\) 0 0
\(179\) −20.8078 −1.55525 −0.777623 0.628731i \(-0.783575\pi\)
−0.777623 + 0.628731i \(0.783575\pi\)
\(180\) 0 0
\(181\) 7.93087 0.589497 0.294748 0.955575i \(-0.404764\pi\)
0.294748 + 0.955575i \(0.404764\pi\)
\(182\) 0 0
\(183\) −10.8769 −0.804043
\(184\) 0 0
\(185\) 2.56155 0.188329
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) −1.43845 −0.104632
\(190\) 0 0
\(191\) −27.0540 −1.95756 −0.978778 0.204921i \(-0.934306\pi\)
−0.978778 + 0.204921i \(0.934306\pi\)
\(192\) 0 0
\(193\) −2.00000 −0.143963 −0.0719816 0.997406i \(-0.522932\pi\)
−0.0719816 + 0.997406i \(0.522932\pi\)
\(194\) 0 0
\(195\) 4.49242 0.321709
\(196\) 0 0
\(197\) 20.2462 1.44248 0.721241 0.692684i \(-0.243572\pi\)
0.721241 + 0.692684i \(0.243572\pi\)
\(198\) 0 0
\(199\) −14.2462 −1.00989 −0.504944 0.863152i \(-0.668487\pi\)
−0.504944 + 0.863152i \(0.668487\pi\)
\(200\) 0 0
\(201\) 6.56155 0.462816
\(202\) 0 0
\(203\) 2.00000 0.140372
\(204\) 0 0
\(205\) 5.61553 0.392205
\(206\) 0 0
\(207\) −5.12311 −0.356080
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −25.1231 −1.72955 −0.864773 0.502163i \(-0.832538\pi\)
−0.864773 + 0.502163i \(0.832538\pi\)
\(212\) 0 0
\(213\) −9.43845 −0.646712
\(214\) 0 0
\(215\) −2.24621 −0.153190
\(216\) 0 0
\(217\) −10.5616 −0.716965
\(218\) 0 0
\(219\) −10.8769 −0.734992
\(220\) 0 0
\(221\) −6.24621 −0.420166
\(222\) 0 0
\(223\) −26.5616 −1.77869 −0.889347 0.457234i \(-0.848840\pi\)
−0.889347 + 0.457234i \(0.848840\pi\)
\(224\) 0 0
\(225\) −16.6847 −1.11231
\(226\) 0 0
\(227\) 10.2462 0.680065 0.340032 0.940414i \(-0.389562\pi\)
0.340032 + 0.940414i \(0.389562\pi\)
\(228\) 0 0
\(229\) −2.31534 −0.153002 −0.0765010 0.997070i \(-0.524375\pi\)
−0.0765010 + 0.997070i \(0.524375\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 2.49242 0.163284 0.0816420 0.996662i \(-0.473984\pi\)
0.0816420 + 0.996662i \(0.473984\pi\)
\(234\) 0 0
\(235\) −3.50758 −0.228809
\(236\) 0 0
\(237\) 13.1231 0.852437
\(238\) 0 0
\(239\) 8.00000 0.517477 0.258738 0.965947i \(-0.416693\pi\)
0.258738 + 0.965947i \(0.416693\pi\)
\(240\) 0 0
\(241\) −5.36932 −0.345868 −0.172934 0.984933i \(-0.555325\pi\)
−0.172934 + 0.984933i \(0.555325\pi\)
\(242\) 0 0
\(243\) 22.2462 1.42710
\(244\) 0 0
\(245\) 0.561553 0.0358763
\(246\) 0 0
\(247\) −16.0000 −1.01806
\(248\) 0 0
\(249\) −20.4924 −1.29865
\(250\) 0 0
\(251\) 15.0540 0.950198 0.475099 0.879932i \(-0.342412\pi\)
0.475099 + 0.879932i \(0.342412\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) −2.87689 −0.180158
\(256\) 0 0
\(257\) −14.0000 −0.873296 −0.436648 0.899632i \(-0.643834\pi\)
−0.436648 + 0.899632i \(0.643834\pi\)
\(258\) 0 0
\(259\) 4.56155 0.283441
\(260\) 0 0
\(261\) 7.12311 0.440909
\(262\) 0 0
\(263\) −9.61553 −0.592919 −0.296459 0.955045i \(-0.595806\pi\)
−0.296459 + 0.955045i \(0.595806\pi\)
\(264\) 0 0
\(265\) −2.38447 −0.146477
\(266\) 0 0
\(267\) 32.1771 1.96921
\(268\) 0 0
\(269\) 7.75379 0.472757 0.236378 0.971661i \(-0.424040\pi\)
0.236378 + 0.971661i \(0.424040\pi\)
\(270\) 0 0
\(271\) −18.2462 −1.10838 −0.554189 0.832391i \(-0.686972\pi\)
−0.554189 + 0.832391i \(0.686972\pi\)
\(272\) 0 0
\(273\) 8.00000 0.484182
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −8.87689 −0.533361 −0.266680 0.963785i \(-0.585927\pi\)
−0.266680 + 0.963785i \(0.585927\pi\)
\(278\) 0 0
\(279\) −37.6155 −2.25198
\(280\) 0 0
\(281\) −29.8617 −1.78140 −0.890701 0.454590i \(-0.849786\pi\)
−0.890701 + 0.454590i \(0.849786\pi\)
\(282\) 0 0
\(283\) −28.4924 −1.69370 −0.846849 0.531833i \(-0.821503\pi\)
−0.846849 + 0.531833i \(0.821503\pi\)
\(284\) 0 0
\(285\) −7.36932 −0.436521
\(286\) 0 0
\(287\) 10.0000 0.590281
\(288\) 0 0
\(289\) −13.0000 −0.764706
\(290\) 0 0
\(291\) −21.9309 −1.28561
\(292\) 0 0
\(293\) 12.2462 0.715431 0.357716 0.933831i \(-0.383556\pi\)
0.357716 + 0.933831i \(0.383556\pi\)
\(294\) 0 0
\(295\) −3.05398 −0.177809
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 4.49242 0.259804
\(300\) 0 0
\(301\) −4.00000 −0.230556
\(302\) 0 0
\(303\) 34.2462 1.96739
\(304\) 0 0
\(305\) 2.38447 0.136534
\(306\) 0 0
\(307\) −20.4924 −1.16956 −0.584782 0.811190i \(-0.698820\pi\)
−0.584782 + 0.811190i \(0.698820\pi\)
\(308\) 0 0
\(309\) −42.2462 −2.40330
\(310\) 0 0
\(311\) 18.7386 1.06257 0.531285 0.847193i \(-0.321709\pi\)
0.531285 + 0.847193i \(0.321709\pi\)
\(312\) 0 0
\(313\) 15.9309 0.900466 0.450233 0.892911i \(-0.351341\pi\)
0.450233 + 0.892911i \(0.351341\pi\)
\(314\) 0 0
\(315\) 2.00000 0.112687
\(316\) 0 0
\(317\) −13.0540 −0.733184 −0.366592 0.930382i \(-0.619476\pi\)
−0.366592 + 0.930382i \(0.619476\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 43.8617 2.44812
\(322\) 0 0
\(323\) 10.2462 0.570114
\(324\) 0 0
\(325\) 14.6307 0.811564
\(326\) 0 0
\(327\) −24.0000 −1.32720
\(328\) 0 0
\(329\) −6.24621 −0.344365
\(330\) 0 0
\(331\) 12.8078 0.703978 0.351989 0.936004i \(-0.385505\pi\)
0.351989 + 0.936004i \(0.385505\pi\)
\(332\) 0 0
\(333\) 16.2462 0.890287
\(334\) 0 0
\(335\) −1.43845 −0.0785908
\(336\) 0 0
\(337\) −26.0000 −1.41631 −0.708155 0.706057i \(-0.750472\pi\)
−0.708155 + 0.706057i \(0.750472\pi\)
\(338\) 0 0
\(339\) −14.5616 −0.790875
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 1.00000 0.0539949
\(344\) 0 0
\(345\) 2.06913 0.111398
\(346\) 0 0
\(347\) −6.87689 −0.369171 −0.184586 0.982816i \(-0.559094\pi\)
−0.184586 + 0.982816i \(0.559094\pi\)
\(348\) 0 0
\(349\) 12.2462 0.655525 0.327762 0.944760i \(-0.393705\pi\)
0.327762 + 0.944760i \(0.393705\pi\)
\(350\) 0 0
\(351\) 4.49242 0.239788
\(352\) 0 0
\(353\) −20.5616 −1.09438 −0.547191 0.837008i \(-0.684303\pi\)
−0.547191 + 0.837008i \(0.684303\pi\)
\(354\) 0 0
\(355\) 2.06913 0.109818
\(356\) 0 0
\(357\) −5.12311 −0.271144
\(358\) 0 0
\(359\) −2.24621 −0.118550 −0.0592752 0.998242i \(-0.518879\pi\)
−0.0592752 + 0.998242i \(0.518879\pi\)
\(360\) 0 0
\(361\) 7.24621 0.381380
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 2.38447 0.124809
\(366\) 0 0
\(367\) −0.315342 −0.0164607 −0.00823035 0.999966i \(-0.502620\pi\)
−0.00823035 + 0.999966i \(0.502620\pi\)
\(368\) 0 0
\(369\) 35.6155 1.85407
\(370\) 0 0
\(371\) −4.24621 −0.220452
\(372\) 0 0
\(373\) 11.6155 0.601429 0.300715 0.953714i \(-0.402775\pi\)
0.300715 + 0.953714i \(0.402775\pi\)
\(374\) 0 0
\(375\) 13.9309 0.719387
\(376\) 0 0
\(377\) −6.24621 −0.321696
\(378\) 0 0
\(379\) −25.9309 −1.33198 −0.665990 0.745961i \(-0.731991\pi\)
−0.665990 + 0.745961i \(0.731991\pi\)
\(380\) 0 0
\(381\) −13.1231 −0.672317
\(382\) 0 0
\(383\) 9.93087 0.507444 0.253722 0.967277i \(-0.418345\pi\)
0.253722 + 0.967277i \(0.418345\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −14.2462 −0.724176
\(388\) 0 0
\(389\) −29.0540 −1.47310 −0.736548 0.676386i \(-0.763545\pi\)
−0.736548 + 0.676386i \(0.763545\pi\)
\(390\) 0 0
\(391\) −2.87689 −0.145491
\(392\) 0 0
\(393\) 33.6155 1.69568
\(394\) 0 0
\(395\) −2.87689 −0.144752
\(396\) 0 0
\(397\) −10.4924 −0.526600 −0.263300 0.964714i \(-0.584811\pi\)
−0.263300 + 0.964714i \(0.584811\pi\)
\(398\) 0 0
\(399\) −13.1231 −0.656977
\(400\) 0 0
\(401\) 2.00000 0.0998752 0.0499376 0.998752i \(-0.484098\pi\)
0.0499376 + 0.998752i \(0.484098\pi\)
\(402\) 0 0
\(403\) 32.9848 1.64309
\(404\) 0 0
\(405\) −3.93087 −0.195326
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −34.4924 −1.70554 −0.852770 0.522286i \(-0.825079\pi\)
−0.852770 + 0.522286i \(0.825079\pi\)
\(410\) 0 0
\(411\) 5.93087 0.292548
\(412\) 0 0
\(413\) −5.43845 −0.267608
\(414\) 0 0
\(415\) 4.49242 0.220524
\(416\) 0 0
\(417\) −13.1231 −0.642641
\(418\) 0 0
\(419\) 18.7386 0.915442 0.457721 0.889096i \(-0.348666\pi\)
0.457721 + 0.889096i \(0.348666\pi\)
\(420\) 0 0
\(421\) 30.9848 1.51011 0.755054 0.655662i \(-0.227610\pi\)
0.755054 + 0.655662i \(0.227610\pi\)
\(422\) 0 0
\(423\) −22.2462 −1.08165
\(424\) 0 0
\(425\) −9.36932 −0.454479
\(426\) 0 0
\(427\) 4.24621 0.205489
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 14.7386 0.709935 0.354968 0.934879i \(-0.384492\pi\)
0.354968 + 0.934879i \(0.384492\pi\)
\(432\) 0 0
\(433\) −1.68466 −0.0809595 −0.0404798 0.999180i \(-0.512889\pi\)
−0.0404798 + 0.999180i \(0.512889\pi\)
\(434\) 0 0
\(435\) −2.87689 −0.137937
\(436\) 0 0
\(437\) −7.36932 −0.352522
\(438\) 0 0
\(439\) −17.6155 −0.840743 −0.420372 0.907352i \(-0.638100\pi\)
−0.420372 + 0.907352i \(0.638100\pi\)
\(440\) 0 0
\(441\) 3.56155 0.169598
\(442\) 0 0
\(443\) 12.1771 0.578551 0.289275 0.957246i \(-0.406586\pi\)
0.289275 + 0.957246i \(0.406586\pi\)
\(444\) 0 0
\(445\) −7.05398 −0.334390
\(446\) 0 0
\(447\) −25.6155 −1.21157
\(448\) 0 0
\(449\) −17.6847 −0.834591 −0.417295 0.908771i \(-0.637022\pi\)
−0.417295 + 0.908771i \(0.637022\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 13.1231 0.616577
\(454\) 0 0
\(455\) −1.75379 −0.0822189
\(456\) 0 0
\(457\) −37.8617 −1.77110 −0.885549 0.464546i \(-0.846217\pi\)
−0.885549 + 0.464546i \(0.846217\pi\)
\(458\) 0 0
\(459\) −2.87689 −0.134282
\(460\) 0 0
\(461\) −14.0000 −0.652045 −0.326023 0.945362i \(-0.605709\pi\)
−0.326023 + 0.945362i \(0.605709\pi\)
\(462\) 0 0
\(463\) −39.5464 −1.83788 −0.918938 0.394401i \(-0.870952\pi\)
−0.918938 + 0.394401i \(0.870952\pi\)
\(464\) 0 0
\(465\) 15.1922 0.704523
\(466\) 0 0
\(467\) −30.4233 −1.40782 −0.703911 0.710288i \(-0.748565\pi\)
−0.703911 + 0.710288i \(0.748565\pi\)
\(468\) 0 0
\(469\) −2.56155 −0.118282
\(470\) 0 0
\(471\) −42.4233 −1.95476
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) −24.0000 −1.10120
\(476\) 0 0
\(477\) −15.1231 −0.692439
\(478\) 0 0
\(479\) −20.4924 −0.936323 −0.468161 0.883643i \(-0.655083\pi\)
−0.468161 + 0.883643i \(0.655083\pi\)
\(480\) 0 0
\(481\) −14.2462 −0.649571
\(482\) 0 0
\(483\) 3.68466 0.167658
\(484\) 0 0
\(485\) 4.80776 0.218309
\(486\) 0 0
\(487\) −17.4384 −0.790211 −0.395106 0.918636i \(-0.629292\pi\)
−0.395106 + 0.918636i \(0.629292\pi\)
\(488\) 0 0
\(489\) −42.2462 −1.91044
\(490\) 0 0
\(491\) 17.1231 0.772755 0.386377 0.922341i \(-0.373726\pi\)
0.386377 + 0.922341i \(0.373726\pi\)
\(492\) 0 0
\(493\) 4.00000 0.180151
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 3.68466 0.165280
\(498\) 0 0
\(499\) −32.4924 −1.45456 −0.727280 0.686341i \(-0.759216\pi\)
−0.727280 + 0.686341i \(0.759216\pi\)
\(500\) 0 0
\(501\) −18.8769 −0.843357
\(502\) 0 0
\(503\) −14.7386 −0.657163 −0.328582 0.944476i \(-0.606571\pi\)
−0.328582 + 0.944476i \(0.606571\pi\)
\(504\) 0 0
\(505\) −7.50758 −0.334083
\(506\) 0 0
\(507\) 8.31534 0.369297
\(508\) 0 0
\(509\) −14.8078 −0.656343 −0.328171 0.944618i \(-0.606432\pi\)
−0.328171 + 0.944618i \(0.606432\pi\)
\(510\) 0 0
\(511\) 4.24621 0.187841
\(512\) 0 0
\(513\) −7.36932 −0.325363
\(514\) 0 0
\(515\) 9.26137 0.408105
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) −59.2311 −2.59995
\(520\) 0 0
\(521\) 22.3153 0.977653 0.488826 0.872381i \(-0.337425\pi\)
0.488826 + 0.872381i \(0.337425\pi\)
\(522\) 0 0
\(523\) −2.24621 −0.0982200 −0.0491100 0.998793i \(-0.515638\pi\)
−0.0491100 + 0.998793i \(0.515638\pi\)
\(524\) 0 0
\(525\) 12.0000 0.523723
\(526\) 0 0
\(527\) −21.1231 −0.920137
\(528\) 0 0
\(529\) −20.9309 −0.910038
\(530\) 0 0
\(531\) −19.3693 −0.840557
\(532\) 0 0
\(533\) −31.2311 −1.35277
\(534\) 0 0
\(535\) −9.61553 −0.415716
\(536\) 0 0
\(537\) 53.3002 2.30007
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 15.1231 0.650193 0.325097 0.945681i \(-0.394603\pi\)
0.325097 + 0.945681i \(0.394603\pi\)
\(542\) 0 0
\(543\) −20.3153 −0.871815
\(544\) 0 0
\(545\) 5.26137 0.225372
\(546\) 0 0
\(547\) −34.7386 −1.48532 −0.742658 0.669670i \(-0.766435\pi\)
−0.742658 + 0.669670i \(0.766435\pi\)
\(548\) 0 0
\(549\) 15.1231 0.645438
\(550\) 0 0
\(551\) 10.2462 0.436503
\(552\) 0 0
\(553\) −5.12311 −0.217857
\(554\) 0 0
\(555\) −6.56155 −0.278522
\(556\) 0 0
\(557\) −40.2462 −1.70529 −0.852643 0.522493i \(-0.825002\pi\)
−0.852643 + 0.522493i \(0.825002\pi\)
\(558\) 0 0
\(559\) 12.4924 0.528373
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 30.7386 1.29548 0.647739 0.761862i \(-0.275715\pi\)
0.647739 + 0.761862i \(0.275715\pi\)
\(564\) 0 0
\(565\) 3.19224 0.134298
\(566\) 0 0
\(567\) −7.00000 −0.293972
\(568\) 0 0
\(569\) −34.0000 −1.42535 −0.712677 0.701492i \(-0.752517\pi\)
−0.712677 + 0.701492i \(0.752517\pi\)
\(570\) 0 0
\(571\) 40.4924 1.69456 0.847278 0.531150i \(-0.178240\pi\)
0.847278 + 0.531150i \(0.178240\pi\)
\(572\) 0 0
\(573\) 69.3002 2.89506
\(574\) 0 0
\(575\) 6.73863 0.281020
\(576\) 0 0
\(577\) 6.31534 0.262911 0.131456 0.991322i \(-0.458035\pi\)
0.131456 + 0.991322i \(0.458035\pi\)
\(578\) 0 0
\(579\) 5.12311 0.212909
\(580\) 0 0
\(581\) 8.00000 0.331896
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) −6.24621 −0.258249
\(586\) 0 0
\(587\) 4.00000 0.165098 0.0825488 0.996587i \(-0.473694\pi\)
0.0825488 + 0.996587i \(0.473694\pi\)
\(588\) 0 0
\(589\) −54.1080 −2.22948
\(590\) 0 0
\(591\) −51.8617 −2.13331
\(592\) 0 0
\(593\) −8.24621 −0.338631 −0.169316 0.985562i \(-0.554156\pi\)
−0.169316 + 0.985562i \(0.554156\pi\)
\(594\) 0 0
\(595\) 1.12311 0.0460428
\(596\) 0 0
\(597\) 36.4924 1.49354
\(598\) 0 0
\(599\) 16.0000 0.653742 0.326871 0.945069i \(-0.394006\pi\)
0.326871 + 0.945069i \(0.394006\pi\)
\(600\) 0 0
\(601\) −43.1231 −1.75903 −0.879514 0.475873i \(-0.842132\pi\)
−0.879514 + 0.475873i \(0.842132\pi\)
\(602\) 0 0
\(603\) −9.12311 −0.371522
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 48.3542 1.96263 0.981317 0.192396i \(-0.0616257\pi\)
0.981317 + 0.192396i \(0.0616257\pi\)
\(608\) 0 0
\(609\) −5.12311 −0.207599
\(610\) 0 0
\(611\) 19.5076 0.789192
\(612\) 0 0
\(613\) −23.6155 −0.953822 −0.476911 0.878952i \(-0.658244\pi\)
−0.476911 + 0.878952i \(0.658244\pi\)
\(614\) 0 0
\(615\) −14.3845 −0.580038
\(616\) 0 0
\(617\) −26.4924 −1.06654 −0.533272 0.845944i \(-0.679038\pi\)
−0.533272 + 0.845944i \(0.679038\pi\)
\(618\) 0 0
\(619\) 27.1922 1.09295 0.546474 0.837476i \(-0.315970\pi\)
0.546474 + 0.837476i \(0.315970\pi\)
\(620\) 0 0
\(621\) 2.06913 0.0830313
\(622\) 0 0
\(623\) −12.5616 −0.503268
\(624\) 0 0
\(625\) 20.3693 0.814773
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 9.12311 0.363762
\(630\) 0 0
\(631\) −37.9309 −1.51000 −0.755002 0.655722i \(-0.772364\pi\)
−0.755002 + 0.655722i \(0.772364\pi\)
\(632\) 0 0
\(633\) 64.3542 2.55785
\(634\) 0 0
\(635\) 2.87689 0.114166
\(636\) 0 0
\(637\) −3.12311 −0.123742
\(638\) 0 0
\(639\) 13.1231 0.519142
\(640\) 0 0
\(641\) 34.8078 1.37482 0.687412 0.726268i \(-0.258747\pi\)
0.687412 + 0.726268i \(0.258747\pi\)
\(642\) 0 0
\(643\) 43.5464 1.71730 0.858651 0.512560i \(-0.171303\pi\)
0.858651 + 0.512560i \(0.171303\pi\)
\(644\) 0 0
\(645\) 5.75379 0.226555
\(646\) 0 0
\(647\) −36.1771 −1.42227 −0.711134 0.703057i \(-0.751818\pi\)
−0.711134 + 0.703057i \(0.751818\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 27.0540 1.06033
\(652\) 0 0
\(653\) 43.3002 1.69447 0.847234 0.531220i \(-0.178266\pi\)
0.847234 + 0.531220i \(0.178266\pi\)
\(654\) 0 0
\(655\) −7.36932 −0.287943
\(656\) 0 0
\(657\) 15.1231 0.590009
\(658\) 0 0
\(659\) 21.6155 0.842021 0.421011 0.907056i \(-0.361675\pi\)
0.421011 + 0.907056i \(0.361675\pi\)
\(660\) 0 0
\(661\) −34.6695 −1.34849 −0.674244 0.738509i \(-0.735530\pi\)
−0.674244 + 0.738509i \(0.735530\pi\)
\(662\) 0 0
\(663\) 16.0000 0.621389
\(664\) 0 0
\(665\) 2.87689 0.111561
\(666\) 0 0
\(667\) −2.87689 −0.111394
\(668\) 0 0
\(669\) 68.0388 2.63053
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −33.3693 −1.28629 −0.643146 0.765743i \(-0.722371\pi\)
−0.643146 + 0.765743i \(0.722371\pi\)
\(674\) 0 0
\(675\) 6.73863 0.259370
\(676\) 0 0
\(677\) 28.2462 1.08559 0.542795 0.839865i \(-0.317366\pi\)
0.542795 + 0.839865i \(0.317366\pi\)
\(678\) 0 0
\(679\) 8.56155 0.328562
\(680\) 0 0
\(681\) −26.2462 −1.00576
\(682\) 0 0
\(683\) −32.4924 −1.24329 −0.621644 0.783300i \(-0.713535\pi\)
−0.621644 + 0.783300i \(0.713535\pi\)
\(684\) 0 0
\(685\) −1.30019 −0.0496776
\(686\) 0 0
\(687\) 5.93087 0.226277
\(688\) 0 0
\(689\) 13.2614 0.505218
\(690\) 0 0
\(691\) −28.1771 −1.07191 −0.535953 0.844248i \(-0.680048\pi\)
−0.535953 + 0.844248i \(0.680048\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 2.87689 0.109127
\(696\) 0 0
\(697\) 20.0000 0.757554
\(698\) 0 0
\(699\) −6.38447 −0.241483
\(700\) 0 0
\(701\) −36.1080 −1.36378 −0.681889 0.731455i \(-0.738841\pi\)
−0.681889 + 0.731455i \(0.738841\pi\)
\(702\) 0 0
\(703\) 23.3693 0.881390
\(704\) 0 0
\(705\) 8.98485 0.338389
\(706\) 0 0
\(707\) −13.3693 −0.502805
\(708\) 0 0
\(709\) 3.30019 0.123941 0.0619706 0.998078i \(-0.480262\pi\)
0.0619706 + 0.998078i \(0.480262\pi\)
\(710\) 0 0
\(711\) −18.2462 −0.684286
\(712\) 0 0
\(713\) 15.1922 0.568954
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −20.4924 −0.765304
\(718\) 0 0
\(719\) −41.3002 −1.54024 −0.770119 0.637901i \(-0.779803\pi\)
−0.770119 + 0.637901i \(0.779803\pi\)
\(720\) 0 0
\(721\) 16.4924 0.614210
\(722\) 0 0
\(723\) 13.7538 0.511509
\(724\) 0 0
\(725\) −9.36932 −0.347968
\(726\) 0 0
\(727\) 3.19224 0.118393 0.0591967 0.998246i \(-0.481146\pi\)
0.0591967 + 0.998246i \(0.481146\pi\)
\(728\) 0 0
\(729\) −35.9848 −1.33277
\(730\) 0 0
\(731\) −8.00000 −0.295891
\(732\) 0 0
\(733\) 23.1231 0.854071 0.427036 0.904235i \(-0.359558\pi\)
0.427036 + 0.904235i \(0.359558\pi\)
\(734\) 0 0
\(735\) −1.43845 −0.0530579
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 20.6307 0.758912 0.379456 0.925210i \(-0.376111\pi\)
0.379456 + 0.925210i \(0.376111\pi\)
\(740\) 0 0
\(741\) 40.9848 1.50562
\(742\) 0 0
\(743\) −16.0000 −0.586983 −0.293492 0.955962i \(-0.594817\pi\)
−0.293492 + 0.955962i \(0.594817\pi\)
\(744\) 0 0
\(745\) 5.61553 0.205737
\(746\) 0 0
\(747\) 28.4924 1.04248
\(748\) 0 0
\(749\) −17.1231 −0.625665
\(750\) 0 0
\(751\) −37.3002 −1.36110 −0.680552 0.732700i \(-0.738260\pi\)
−0.680552 + 0.732700i \(0.738260\pi\)
\(752\) 0 0
\(753\) −38.5616 −1.40526
\(754\) 0 0
\(755\) −2.87689 −0.104701
\(756\) 0 0
\(757\) −26.9848 −0.980781 −0.490390 0.871503i \(-0.663146\pi\)
−0.490390 + 0.871503i \(0.663146\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 40.1080 1.45391 0.726956 0.686684i \(-0.240934\pi\)
0.726956 + 0.686684i \(0.240934\pi\)
\(762\) 0 0
\(763\) 9.36932 0.339192
\(764\) 0 0
\(765\) 4.00000 0.144620
\(766\) 0 0
\(767\) 16.9848 0.613287
\(768\) 0 0
\(769\) 18.6307 0.671840 0.335920 0.941891i \(-0.390953\pi\)
0.335920 + 0.941891i \(0.390953\pi\)
\(770\) 0 0
\(771\) 35.8617 1.29153
\(772\) 0 0
\(773\) 13.5076 0.485834 0.242917 0.970047i \(-0.421896\pi\)
0.242917 + 0.970047i \(0.421896\pi\)
\(774\) 0 0
\(775\) 49.4773 1.77728
\(776\) 0 0
\(777\) −11.6847 −0.419185
\(778\) 0 0
\(779\) 51.2311 1.83554
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) −2.87689 −0.102812
\(784\) 0 0
\(785\) 9.30019 0.331938
\(786\) 0 0
\(787\) 10.8769 0.387719 0.193860 0.981029i \(-0.437899\pi\)
0.193860 + 0.981029i \(0.437899\pi\)
\(788\) 0 0
\(789\) 24.6307 0.876876
\(790\) 0 0
\(791\) 5.68466 0.202123
\(792\) 0 0
\(793\) −13.2614 −0.470925
\(794\) 0 0
\(795\) 6.10795 0.216627
\(796\) 0 0
\(797\) 12.0691 0.427511 0.213755 0.976887i \(-0.431430\pi\)
0.213755 + 0.976887i \(0.431430\pi\)
\(798\) 0 0
\(799\) −12.4924 −0.441950
\(800\) 0 0
\(801\) −44.7386 −1.58076
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) −0.807764 −0.0284699
\(806\) 0 0
\(807\) −19.8617 −0.699166
\(808\) 0 0
\(809\) 20.7386 0.729132 0.364566 0.931178i \(-0.381217\pi\)
0.364566 + 0.931178i \(0.381217\pi\)
\(810\) 0 0
\(811\) 5.12311 0.179897 0.0899483 0.995946i \(-0.471330\pi\)
0.0899483 + 0.995946i \(0.471330\pi\)
\(812\) 0 0
\(813\) 46.7386 1.63920
\(814\) 0 0
\(815\) 9.26137 0.324412
\(816\) 0 0
\(817\) −20.4924 −0.716939
\(818\) 0 0
\(819\) −11.1231 −0.388673
\(820\) 0 0
\(821\) 36.2462 1.26500 0.632501 0.774560i \(-0.282029\pi\)
0.632501 + 0.774560i \(0.282029\pi\)
\(822\) 0 0
\(823\) −52.6695 −1.83594 −0.917972 0.396646i \(-0.870174\pi\)
−0.917972 + 0.396646i \(0.870174\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −47.2311 −1.64238 −0.821192 0.570651i \(-0.806691\pi\)
−0.821192 + 0.570651i \(0.806691\pi\)
\(828\) 0 0
\(829\) −6.17708 −0.214539 −0.107269 0.994230i \(-0.534211\pi\)
−0.107269 + 0.994230i \(0.534211\pi\)
\(830\) 0 0
\(831\) 22.7386 0.788794
\(832\) 0 0
\(833\) 2.00000 0.0692959
\(834\) 0 0
\(835\) 4.13826 0.143210
\(836\) 0 0
\(837\) 15.1922 0.525120
\(838\) 0 0
\(839\) 7.68466 0.265304 0.132652 0.991163i \(-0.457651\pi\)
0.132652 + 0.991163i \(0.457651\pi\)
\(840\) 0 0
\(841\) −25.0000 −0.862069
\(842\) 0 0
\(843\) 76.4924 2.63454
\(844\) 0 0
\(845\) −1.82292 −0.0627103
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 72.9848 2.50483
\(850\) 0 0
\(851\) −6.56155 −0.224927
\(852\) 0 0
\(853\) −46.0000 −1.57501 −0.787505 0.616308i \(-0.788628\pi\)
−0.787505 + 0.616308i \(0.788628\pi\)
\(854\) 0 0
\(855\) 10.2462 0.350413
\(856\) 0 0
\(857\) −32.8769 −1.12305 −0.561527 0.827459i \(-0.689786\pi\)
−0.561527 + 0.827459i \(0.689786\pi\)
\(858\) 0 0
\(859\) 36.8078 1.25586 0.627932 0.778268i \(-0.283901\pi\)
0.627932 + 0.778268i \(0.283901\pi\)
\(860\) 0 0
\(861\) −25.6155 −0.872975
\(862\) 0 0
\(863\) 51.2311 1.74393 0.871963 0.489572i \(-0.162847\pi\)
0.871963 + 0.489572i \(0.162847\pi\)
\(864\) 0 0
\(865\) 12.9848 0.441498
\(866\) 0 0
\(867\) 33.3002 1.13093
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 8.00000 0.271070
\(872\) 0 0
\(873\) 30.4924 1.03201
\(874\) 0 0
\(875\) −5.43845 −0.183853
\(876\) 0 0
\(877\) 44.2462 1.49409 0.747044 0.664774i \(-0.231472\pi\)
0.747044 + 0.664774i \(0.231472\pi\)
\(878\) 0 0
\(879\) −31.3693 −1.05806
\(880\) 0 0
\(881\) −19.9309 −0.671488 −0.335744 0.941953i \(-0.608988\pi\)
−0.335744 + 0.941953i \(0.608988\pi\)
\(882\) 0 0
\(883\) −52.0000 −1.74994 −0.874970 0.484178i \(-0.839119\pi\)
−0.874970 + 0.484178i \(0.839119\pi\)
\(884\) 0 0
\(885\) 7.82292 0.262965
\(886\) 0 0
\(887\) 31.3693 1.05328 0.526639 0.850089i \(-0.323452\pi\)
0.526639 + 0.850089i \(0.323452\pi\)
\(888\) 0 0
\(889\) 5.12311 0.171823
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −32.0000 −1.07084
\(894\) 0 0
\(895\) −11.6847 −0.390575
\(896\) 0 0
\(897\) −11.5076 −0.384227
\(898\) 0 0
\(899\) −21.1231 −0.704495
\(900\) 0 0
\(901\) −8.49242 −0.282924
\(902\) 0 0
\(903\) 10.2462 0.340973
\(904\) 0 0
\(905\) 4.45360 0.148043
\(906\) 0 0
\(907\) 1.75379 0.0582336 0.0291168 0.999576i \(-0.490731\pi\)
0.0291168 + 0.999576i \(0.490731\pi\)
\(908\) 0 0
\(909\) −47.6155 −1.57931
\(910\) 0 0
\(911\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) −6.10795 −0.201923
\(916\) 0 0
\(917\) −13.1231 −0.433363
\(918\) 0 0
\(919\) 38.7386 1.27787 0.638935 0.769261i \(-0.279375\pi\)
0.638935 + 0.769261i \(0.279375\pi\)
\(920\) 0 0
\(921\) 52.4924 1.72968
\(922\) 0 0
\(923\) −11.5076 −0.378777
\(924\) 0 0
\(925\) −21.3693 −0.702619
\(926\) 0 0
\(927\) 58.7386 1.92923
\(928\) 0 0
\(929\) −14.0000 −0.459325 −0.229663 0.973270i \(-0.573762\pi\)
−0.229663 + 0.973270i \(0.573762\pi\)
\(930\) 0 0
\(931\) 5.12311 0.167903
\(932\) 0 0
\(933\) −48.0000 −1.57145
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 12.8769 0.420670 0.210335 0.977629i \(-0.432545\pi\)
0.210335 + 0.977629i \(0.432545\pi\)
\(938\) 0 0
\(939\) −40.8078 −1.33171
\(940\) 0 0
\(941\) −4.73863 −0.154475 −0.0772375 0.997013i \(-0.524610\pi\)
−0.0772375 + 0.997013i \(0.524610\pi\)
\(942\) 0 0
\(943\) −14.3845 −0.468423
\(944\) 0 0
\(945\) −0.807764 −0.0262766
\(946\) 0 0
\(947\) 17.9309 0.582675 0.291337 0.956620i \(-0.405900\pi\)
0.291337 + 0.956620i \(0.405900\pi\)
\(948\) 0 0
\(949\) −13.2614 −0.430482
\(950\) 0 0
\(951\) 33.4384 1.08432
\(952\) 0 0
\(953\) 54.3542 1.76070 0.880352 0.474321i \(-0.157306\pi\)
0.880352 + 0.474321i \(0.157306\pi\)
\(954\) 0 0
\(955\) −15.1922 −0.491609
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −2.31534 −0.0747663
\(960\) 0 0
\(961\) 80.5464 2.59827
\(962\) 0 0
\(963\) −60.9848 −1.96521
\(964\) 0 0
\(965\) −1.12311 −0.0361540
\(966\) 0 0
\(967\) 37.1231 1.19380 0.596899 0.802316i \(-0.296399\pi\)
0.596899 + 0.802316i \(0.296399\pi\)
\(968\) 0 0
\(969\) −26.2462 −0.843150
\(970\) 0 0
\(971\) −47.0540 −1.51003 −0.755017 0.655705i \(-0.772371\pi\)
−0.755017 + 0.655705i \(0.772371\pi\)
\(972\) 0 0
\(973\) 5.12311 0.164239
\(974\) 0 0
\(975\) −37.4773 −1.20023
\(976\) 0 0
\(977\) 4.42329 0.141514 0.0707568 0.997494i \(-0.477459\pi\)
0.0707568 + 0.997494i \(0.477459\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 33.3693 1.06540
\(982\) 0 0
\(983\) 47.6847 1.52090 0.760452 0.649394i \(-0.224977\pi\)
0.760452 + 0.649394i \(0.224977\pi\)
\(984\) 0 0
\(985\) 11.3693 0.362257
\(986\) 0 0
\(987\) 16.0000 0.509286
\(988\) 0 0
\(989\) 5.75379 0.182960
\(990\) 0 0
\(991\) −3.50758 −0.111422 −0.0557109 0.998447i \(-0.517743\pi\)
−0.0557109 + 0.998447i \(0.517743\pi\)
\(992\) 0 0
\(993\) −32.8078 −1.04112
\(994\) 0 0
\(995\) −8.00000 −0.253617
\(996\) 0 0
\(997\) −13.3693 −0.423411 −0.211705 0.977334i \(-0.567902\pi\)
−0.211705 + 0.977334i \(0.567902\pi\)
\(998\) 0 0
\(999\) −6.56155 −0.207598
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6776.2.a.l.1.1 2
11.10 odd 2 616.2.a.f.1.1 2
33.32 even 2 5544.2.a.bf.1.1 2
44.43 even 2 1232.2.a.o.1.2 2
77.76 even 2 4312.2.a.t.1.2 2
88.21 odd 2 4928.2.a.bs.1.2 2
88.43 even 2 4928.2.a.bo.1.1 2
308.307 odd 2 8624.2.a.bi.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
616.2.a.f.1.1 2 11.10 odd 2
1232.2.a.o.1.2 2 44.43 even 2
4312.2.a.t.1.2 2 77.76 even 2
4928.2.a.bo.1.1 2 88.43 even 2
4928.2.a.bs.1.2 2 88.21 odd 2
5544.2.a.bf.1.1 2 33.32 even 2
6776.2.a.l.1.1 2 1.1 even 1 trivial
8624.2.a.bi.1.1 2 308.307 odd 2