Properties

Label 2-6800-1.1-c1-0-31
Degree $2$
Conductor $6800$
Sign $1$
Analytic cond. $54.2982$
Root an. cond. $7.36873$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.44·3-s + 2.86·7-s − 0.909·9-s + 3.84·11-s − 6.22·13-s + 17-s − 6.62·19-s − 4.14·21-s + 4.51·23-s + 5.65·27-s − 0.658·29-s − 3.49·31-s − 5.56·33-s − 3.34·37-s + 8.99·39-s + 2.04·41-s − 1.29·43-s + 6.22·47-s + 1.21·49-s − 1.44·51-s + 9.92·53-s + 9.57·57-s + 2·59-s − 7.61·61-s − 2.60·63-s + 0.257·67-s − 6.53·69-s + ⋯
L(s)  = 1  − 0.834·3-s + 1.08·7-s − 0.303·9-s + 1.15·11-s − 1.72·13-s + 0.242·17-s − 1.51·19-s − 0.904·21-s + 0.942·23-s + 1.08·27-s − 0.122·29-s − 0.628·31-s − 0.968·33-s − 0.549·37-s + 1.44·39-s + 0.318·41-s − 0.197·43-s + 0.907·47-s + 0.172·49-s − 0.202·51-s + 1.36·53-s + 1.26·57-s + 0.260·59-s − 0.975·61-s − 0.328·63-s + 0.0314·67-s − 0.786·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6800\)    =    \(2^{4} \cdot 5^{2} \cdot 17\)
Sign: $1$
Analytic conductor: \(54.2982\)
Root analytic conductor: \(7.36873\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 6800,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.299695663\)
\(L(\frac12)\) \(\approx\) \(1.299695663\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
17 \( 1 - T \)
good3 \( 1 + 1.44T + 3T^{2} \)
7 \( 1 - 2.86T + 7T^{2} \)
11 \( 1 - 3.84T + 11T^{2} \)
13 \( 1 + 6.22T + 13T^{2} \)
19 \( 1 + 6.62T + 19T^{2} \)
23 \( 1 - 4.51T + 23T^{2} \)
29 \( 1 + 0.658T + 29T^{2} \)
31 \( 1 + 3.49T + 31T^{2} \)
37 \( 1 + 3.34T + 37T^{2} \)
41 \( 1 - 2.04T + 41T^{2} \)
43 \( 1 + 1.29T + 43T^{2} \)
47 \( 1 - 6.22T + 47T^{2} \)
53 \( 1 - 9.92T + 53T^{2} \)
59 \( 1 - 2T + 59T^{2} \)
61 \( 1 + 7.61T + 61T^{2} \)
67 \( 1 - 0.257T + 67T^{2} \)
71 \( 1 + 1.18T + 71T^{2} \)
73 \( 1 + 3.26T + 73T^{2} \)
79 \( 1 - 4.99T + 79T^{2} \)
83 \( 1 - 7.91T + 83T^{2} \)
89 \( 1 - 12.8T + 89T^{2} \)
97 \( 1 - 4.08T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.85322014100423969788381821661, −7.21096895390957029815928567875, −6.55935904091557270384602045763, −5.82291069246123159861688864695, −5.01363483894396269443476257077, −4.66691456551665566088945258548, −3.75960132275036766151816934272, −2.56238257598738840075153297259, −1.77105534131034895201135926071, −0.60873149548084074264631979494, 0.60873149548084074264631979494, 1.77105534131034895201135926071, 2.56238257598738840075153297259, 3.75960132275036766151816934272, 4.66691456551665566088945258548, 5.01363483894396269443476257077, 5.82291069246123159861688864695, 6.55935904091557270384602045763, 7.21096895390957029815928567875, 7.85322014100423969788381821661

Graph of the $Z$-function along the critical line