Properties

Label 6800.2.a.bw.1.1
Level $6800$
Weight $2$
Character 6800.1
Self dual yes
Analytic conductor $54.298$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [6800,2,Mod(1,6800)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6800, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("6800.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 6800 = 2^{4} \cdot 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6800.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(54.2982733745\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.6224.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 6x^{2} - 2x + 5 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 85)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(2.44579\) of defining polynomial
Character \(\chi\) \(=\) 6800.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.44579 q^{3} +2.86537 q^{7} -0.909700 q^{9} +3.84724 q^{11} -6.22085 q^{13} +1.00000 q^{17} -6.62231 q^{19} -4.14271 q^{21} +4.51796 q^{23} +5.65259 q^{27} -0.658562 q^{29} -3.49984 q^{31} -5.56229 q^{33} -3.34144 q^{37} +8.99403 q^{39} +2.04189 q^{41} -1.29303 q^{43} +6.22085 q^{47} +1.21033 q^{49} -1.44579 q^{51} +9.92750 q^{53} +9.57445 q^{57} +2.00000 q^{59} -7.61634 q^{61} -2.60662 q^{63} +0.257106 q^{67} -6.53201 q^{69} -1.18868 q^{71} -3.26330 q^{73} +11.0238 q^{77} +4.99756 q^{79} -5.44335 q^{81} +7.91534 q^{83} +0.952140 q^{87} +12.8013 q^{89} -17.8250 q^{91} +5.06002 q^{93} +4.08866 q^{97} -3.49984 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{3} + 10 q^{7} + 4 q^{9} + 2 q^{11} - 6 q^{13} + 4 q^{17} - 4 q^{19} + 12 q^{21} + 4 q^{23} + 10 q^{27} - 4 q^{29} + 12 q^{31} - 2 q^{33} - 12 q^{37} + 22 q^{39} - 6 q^{41} + 18 q^{43} + 6 q^{47}+ \cdots + 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.44579 −0.834726 −0.417363 0.908740i \(-0.637046\pi\)
−0.417363 + 0.908740i \(0.637046\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 2.86537 1.08301 0.541504 0.840698i \(-0.317855\pi\)
0.541504 + 0.840698i \(0.317855\pi\)
\(8\) 0 0
\(9\) −0.909700 −0.303233
\(10\) 0 0
\(11\) 3.84724 1.15999 0.579994 0.814621i \(-0.303055\pi\)
0.579994 + 0.814621i \(0.303055\pi\)
\(12\) 0 0
\(13\) −6.22085 −1.72535 −0.862677 0.505755i \(-0.831214\pi\)
−0.862677 + 0.505755i \(0.831214\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 1.00000 0.242536
\(18\) 0 0
\(19\) −6.62231 −1.51926 −0.759631 0.650354i \(-0.774620\pi\)
−0.759631 + 0.650354i \(0.774620\pi\)
\(20\) 0 0
\(21\) −4.14271 −0.904014
\(22\) 0 0
\(23\) 4.51796 0.942060 0.471030 0.882117i \(-0.343882\pi\)
0.471030 + 0.882117i \(0.343882\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 5.65259 1.08784
\(28\) 0 0
\(29\) −0.658562 −0.122292 −0.0611459 0.998129i \(-0.519476\pi\)
−0.0611459 + 0.998129i \(0.519476\pi\)
\(30\) 0 0
\(31\) −3.49984 −0.628589 −0.314295 0.949326i \(-0.601768\pi\)
−0.314295 + 0.949326i \(0.601768\pi\)
\(32\) 0 0
\(33\) −5.56229 −0.968271
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −3.34144 −0.549329 −0.274665 0.961540i \(-0.588567\pi\)
−0.274665 + 0.961540i \(0.588567\pi\)
\(38\) 0 0
\(39\) 8.99403 1.44020
\(40\) 0 0
\(41\) 2.04189 0.318890 0.159445 0.987207i \(-0.449030\pi\)
0.159445 + 0.987207i \(0.449030\pi\)
\(42\) 0 0
\(43\) −1.29303 −0.197185 −0.0985926 0.995128i \(-0.531434\pi\)
−0.0985926 + 0.995128i \(0.531434\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 6.22085 0.907405 0.453702 0.891153i \(-0.350103\pi\)
0.453702 + 0.891153i \(0.350103\pi\)
\(48\) 0 0
\(49\) 1.21033 0.172905
\(50\) 0 0
\(51\) −1.44579 −0.202451
\(52\) 0 0
\(53\) 9.92750 1.36365 0.681823 0.731517i \(-0.261187\pi\)
0.681823 + 0.731517i \(0.261187\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 9.57445 1.26817
\(58\) 0 0
\(59\) 2.00000 0.260378 0.130189 0.991489i \(-0.458442\pi\)
0.130189 + 0.991489i \(0.458442\pi\)
\(60\) 0 0
\(61\) −7.61634 −0.975173 −0.487586 0.873075i \(-0.662123\pi\)
−0.487586 + 0.873075i \(0.662123\pi\)
\(62\) 0 0
\(63\) −2.60662 −0.328404
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 0.257106 0.0314106 0.0157053 0.999877i \(-0.495001\pi\)
0.0157053 + 0.999877i \(0.495001\pi\)
\(68\) 0 0
\(69\) −6.53201 −0.786362
\(70\) 0 0
\(71\) −1.18868 −0.141070 −0.0705352 0.997509i \(-0.522471\pi\)
−0.0705352 + 0.997509i \(0.522471\pi\)
\(72\) 0 0
\(73\) −3.26330 −0.381940 −0.190970 0.981596i \(-0.561163\pi\)
−0.190970 + 0.981596i \(0.561163\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 11.0238 1.25627
\(78\) 0 0
\(79\) 4.99756 0.562269 0.281135 0.959668i \(-0.409289\pi\)
0.281135 + 0.959668i \(0.409289\pi\)
\(80\) 0 0
\(81\) −5.44335 −0.604816
\(82\) 0 0
\(83\) 7.91534 0.868821 0.434411 0.900715i \(-0.356957\pi\)
0.434411 + 0.900715i \(0.356957\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0.952140 0.102080
\(88\) 0 0
\(89\) 12.8013 1.35693 0.678466 0.734632i \(-0.262645\pi\)
0.678466 + 0.734632i \(0.262645\pi\)
\(90\) 0 0
\(91\) −17.8250 −1.86857
\(92\) 0 0
\(93\) 5.06002 0.524699
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 4.08866 0.415141 0.207570 0.978220i \(-0.433444\pi\)
0.207570 + 0.978220i \(0.433444\pi\)
\(98\) 0 0
\(99\) −3.49984 −0.351747
\(100\) 0 0
\(101\) 12.2871 1.22261 0.611304 0.791396i \(-0.290645\pi\)
0.611304 + 0.791396i \(0.290645\pi\)
\(102\) 0 0
\(103\) 13.5623 1.33633 0.668166 0.744012i \(-0.267079\pi\)
0.668166 + 0.744012i \(0.267079\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −6.63800 −0.641719 −0.320860 0.947127i \(-0.603972\pi\)
−0.320860 + 0.947127i \(0.603972\pi\)
\(108\) 0 0
\(109\) −2.58042 −0.247159 −0.123580 0.992335i \(-0.539437\pi\)
−0.123580 + 0.992335i \(0.539437\pi\)
\(110\) 0 0
\(111\) 4.83101 0.458539
\(112\) 0 0
\(113\) 8.63283 0.812108 0.406054 0.913849i \(-0.366904\pi\)
0.406054 + 0.913849i \(0.366904\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 5.65911 0.523185
\(118\) 0 0
\(119\) 2.86537 0.262668
\(120\) 0 0
\(121\) 3.80127 0.345570
\(122\) 0 0
\(123\) −2.95214 −0.266186
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 3.24550 0.287991 0.143996 0.989578i \(-0.454005\pi\)
0.143996 + 0.989578i \(0.454005\pi\)
\(128\) 0 0
\(129\) 1.86945 0.164595
\(130\) 0 0
\(131\) 3.44742 0.301203 0.150601 0.988595i \(-0.451879\pi\)
0.150601 + 0.988595i \(0.451879\pi\)
\(132\) 0 0
\(133\) −18.9754 −1.64537
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −14.6869 −1.25478 −0.627392 0.778703i \(-0.715878\pi\)
−0.627392 + 0.778703i \(0.715878\pi\)
\(138\) 0 0
\(139\) −13.9883 −1.18647 −0.593237 0.805028i \(-0.702150\pi\)
−0.593237 + 0.805028i \(0.702150\pi\)
\(140\) 0 0
\(141\) −8.99403 −0.757434
\(142\) 0 0
\(143\) −23.9331 −2.00139
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −1.74989 −0.144328
\(148\) 0 0
\(149\) −17.8388 −1.46141 −0.730707 0.682691i \(-0.760809\pi\)
−0.730707 + 0.682691i \(0.760809\pi\)
\(150\) 0 0
\(151\) 2.80291 0.228098 0.114049 0.993475i \(-0.463618\pi\)
0.114049 + 0.993475i \(0.463618\pi\)
\(152\) 0 0
\(153\) −0.909700 −0.0735449
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −3.60582 −0.287776 −0.143888 0.989594i \(-0.545960\pi\)
−0.143888 + 0.989594i \(0.545960\pi\)
\(158\) 0 0
\(159\) −14.3530 −1.13827
\(160\) 0 0
\(161\) 12.9456 1.02026
\(162\) 0 0
\(163\) 13.7256 1.07507 0.537535 0.843242i \(-0.319356\pi\)
0.537535 + 0.843242i \(0.319356\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 6.32684 0.489586 0.244793 0.969575i \(-0.421280\pi\)
0.244793 + 0.969575i \(0.421280\pi\)
\(168\) 0 0
\(169\) 25.6990 1.97685
\(170\) 0 0
\(171\) 6.02431 0.460691
\(172\) 0 0
\(173\) 1.76699 0.134342 0.0671708 0.997741i \(-0.478603\pi\)
0.0671708 + 0.997741i \(0.478603\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −2.89157 −0.217344
\(178\) 0 0
\(179\) −1.10843 −0.0828476 −0.0414238 0.999142i \(-0.513189\pi\)
−0.0414238 + 0.999142i \(0.513189\pi\)
\(180\) 0 0
\(181\) −10.8310 −0.805062 −0.402531 0.915406i \(-0.631870\pi\)
−0.402531 + 0.915406i \(0.631870\pi\)
\(182\) 0 0
\(183\) 11.0116 0.814002
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 3.84724 0.281338
\(188\) 0 0
\(189\) 16.1968 1.17814
\(190\) 0 0
\(191\) −3.19221 −0.230980 −0.115490 0.993309i \(-0.536844\pi\)
−0.115490 + 0.993309i \(0.536844\pi\)
\(192\) 0 0
\(193\) −7.11407 −0.512082 −0.256041 0.966666i \(-0.582418\pi\)
−0.256041 + 0.966666i \(0.582418\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 23.1721 1.65095 0.825473 0.564442i \(-0.190909\pi\)
0.825473 + 0.564442i \(0.190909\pi\)
\(198\) 0 0
\(199\) 24.7131 1.75186 0.875932 0.482434i \(-0.160247\pi\)
0.875932 + 0.482434i \(0.160247\pi\)
\(200\) 0 0
\(201\) −0.371721 −0.0262192
\(202\) 0 0
\(203\) −1.88702 −0.132443
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −4.10999 −0.285664
\(208\) 0 0
\(209\) −25.4776 −1.76232
\(210\) 0 0
\(211\) 4.27138 0.294054 0.147027 0.989133i \(-0.453030\pi\)
0.147027 + 0.989133i \(0.453030\pi\)
\(212\) 0 0
\(213\) 1.71858 0.117755
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −10.0283 −0.680767
\(218\) 0 0
\(219\) 4.71803 0.318815
\(220\) 0 0
\(221\) −6.22085 −0.418460
\(222\) 0 0
\(223\) 3.65423 0.244705 0.122353 0.992487i \(-0.460956\pi\)
0.122353 + 0.992487i \(0.460956\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 19.0016 1.26118 0.630589 0.776117i \(-0.282813\pi\)
0.630589 + 0.776117i \(0.282813\pi\)
\(228\) 0 0
\(229\) −20.8851 −1.38012 −0.690062 0.723751i \(-0.742417\pi\)
−0.690062 + 0.723751i \(0.742417\pi\)
\(230\) 0 0
\(231\) −15.9380 −1.04864
\(232\) 0 0
\(233\) 0.682876 0.0447367 0.0223684 0.999750i \(-0.492879\pi\)
0.0223684 + 0.999750i \(0.492879\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −7.22541 −0.469341
\(238\) 0 0
\(239\) −28.9915 −1.87531 −0.937653 0.347574i \(-0.887006\pi\)
−0.937653 + 0.347574i \(0.887006\pi\)
\(240\) 0 0
\(241\) −18.0943 −1.16556 −0.582778 0.812631i \(-0.698034\pi\)
−0.582778 + 0.812631i \(0.698034\pi\)
\(242\) 0 0
\(243\) −9.08786 −0.582986
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 41.1964 2.62127
\(248\) 0 0
\(249\) −11.4439 −0.725227
\(250\) 0 0
\(251\) 7.21325 0.455296 0.227648 0.973743i \(-0.426896\pi\)
0.227648 + 0.973743i \(0.426896\pi\)
\(252\) 0 0
\(253\) 17.3817 1.09278
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 4.87942 0.304370 0.152185 0.988352i \(-0.451369\pi\)
0.152185 + 0.988352i \(0.451369\pi\)
\(258\) 0 0
\(259\) −9.57445 −0.594927
\(260\) 0 0
\(261\) 0.599094 0.0370830
\(262\) 0 0
\(263\) 30.0234 1.85132 0.925662 0.378351i \(-0.123509\pi\)
0.925662 + 0.378351i \(0.123509\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −18.5079 −1.13267
\(268\) 0 0
\(269\) −29.6568 −1.80821 −0.904104 0.427312i \(-0.859460\pi\)
−0.904104 + 0.427312i \(0.859460\pi\)
\(270\) 0 0
\(271\) −3.91622 −0.237893 −0.118947 0.992901i \(-0.537952\pi\)
−0.118947 + 0.992901i \(0.537952\pi\)
\(272\) 0 0
\(273\) 25.7712 1.55974
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 0.455504 0.0273686 0.0136843 0.999906i \(-0.495644\pi\)
0.0136843 + 0.999906i \(0.495644\pi\)
\(278\) 0 0
\(279\) 3.18380 0.190609
\(280\) 0 0
\(281\) 16.4941 0.983957 0.491978 0.870607i \(-0.336274\pi\)
0.491978 + 0.870607i \(0.336274\pi\)
\(282\) 0 0
\(283\) 8.79775 0.522972 0.261486 0.965207i \(-0.415788\pi\)
0.261486 + 0.965207i \(0.415788\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 5.85077 0.345360
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) −5.91134 −0.346529
\(292\) 0 0
\(293\) 22.5023 1.31460 0.657299 0.753630i \(-0.271699\pi\)
0.657299 + 0.753630i \(0.271699\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 21.7469 1.26188
\(298\) 0 0
\(299\) −28.1056 −1.62539
\(300\) 0 0
\(301\) −3.70501 −0.213553
\(302\) 0 0
\(303\) −17.7645 −1.02054
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 11.7034 0.667947 0.333973 0.942583i \(-0.391610\pi\)
0.333973 + 0.942583i \(0.391610\pi\)
\(308\) 0 0
\(309\) −19.6082 −1.11547
\(310\) 0 0
\(311\) 21.0605 1.19423 0.597115 0.802155i \(-0.296313\pi\)
0.597115 + 0.802155i \(0.296313\pi\)
\(312\) 0 0
\(313\) −22.2911 −1.25997 −0.629983 0.776609i \(-0.716938\pi\)
−0.629983 + 0.776609i \(0.716938\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 27.8613 1.56485 0.782423 0.622747i \(-0.213984\pi\)
0.782423 + 0.622747i \(0.213984\pi\)
\(318\) 0 0
\(319\) −2.53365 −0.141857
\(320\) 0 0
\(321\) 9.59713 0.535659
\(322\) 0 0
\(323\) −6.62231 −0.368475
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 3.73074 0.206310
\(328\) 0 0
\(329\) 17.8250 0.982726
\(330\) 0 0
\(331\) 13.0067 0.714914 0.357457 0.933930i \(-0.383644\pi\)
0.357457 + 0.933930i \(0.383644\pi\)
\(332\) 0 0
\(333\) 3.03971 0.166575
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 15.1126 0.823238 0.411619 0.911356i \(-0.364963\pi\)
0.411619 + 0.911356i \(0.364963\pi\)
\(338\) 0 0
\(339\) −12.4812 −0.677888
\(340\) 0 0
\(341\) −13.4647 −0.729155
\(342\) 0 0
\(343\) −16.5895 −0.895750
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −3.58828 −0.192629 −0.0963144 0.995351i \(-0.530705\pi\)
−0.0963144 + 0.995351i \(0.530705\pi\)
\(348\) 0 0
\(349\) 31.2851 1.67465 0.837326 0.546703i \(-0.184117\pi\)
0.837326 + 0.546703i \(0.184117\pi\)
\(350\) 0 0
\(351\) −35.1640 −1.87691
\(352\) 0 0
\(353\) 24.4417 1.30090 0.650450 0.759549i \(-0.274580\pi\)
0.650450 + 0.759549i \(0.274580\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) −4.14271 −0.219256
\(358\) 0 0
\(359\) 0.136195 0.00718808 0.00359404 0.999994i \(-0.498856\pi\)
0.00359404 + 0.999994i \(0.498856\pi\)
\(360\) 0 0
\(361\) 24.8550 1.30816
\(362\) 0 0
\(363\) −5.49583 −0.288456
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −16.9896 −0.886851 −0.443426 0.896311i \(-0.646237\pi\)
−0.443426 + 0.896311i \(0.646237\pi\)
\(368\) 0 0
\(369\) −1.85751 −0.0966980
\(370\) 0 0
\(371\) 28.4459 1.47684
\(372\) 0 0
\(373\) 18.3533 0.950296 0.475148 0.879906i \(-0.342394\pi\)
0.475148 + 0.879906i \(0.342394\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 4.09682 0.210997
\(378\) 0 0
\(379\) 35.1943 1.80781 0.903905 0.427732i \(-0.140687\pi\)
0.903905 + 0.427732i \(0.140687\pi\)
\(380\) 0 0
\(381\) −4.69230 −0.240394
\(382\) 0 0
\(383\) 10.8237 0.553067 0.276533 0.961004i \(-0.410814\pi\)
0.276533 + 0.961004i \(0.410814\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 1.17627 0.0597931
\(388\) 0 0
\(389\) 0.174083 0.00882636 0.00441318 0.999990i \(-0.498595\pi\)
0.00441318 + 0.999990i \(0.498595\pi\)
\(390\) 0 0
\(391\) 4.51796 0.228483
\(392\) 0 0
\(393\) −4.98424 −0.251422
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −2.75287 −0.138162 −0.0690812 0.997611i \(-0.522007\pi\)
−0.0690812 + 0.997611i \(0.522007\pi\)
\(398\) 0 0
\(399\) 27.4343 1.37343
\(400\) 0 0
\(401\) 33.9912 1.69744 0.848719 0.528843i \(-0.177374\pi\)
0.848719 + 0.528843i \(0.177374\pi\)
\(402\) 0 0
\(403\) 21.7720 1.08454
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −12.8553 −0.637215
\(408\) 0 0
\(409\) −4.68288 −0.231553 −0.115777 0.993275i \(-0.536936\pi\)
−0.115777 + 0.993275i \(0.536936\pi\)
\(410\) 0 0
\(411\) 21.2341 1.04740
\(412\) 0 0
\(413\) 5.73074 0.281991
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 20.2241 0.990380
\(418\) 0 0
\(419\) 29.0991 1.42158 0.710792 0.703402i \(-0.248337\pi\)
0.710792 + 0.703402i \(0.248337\pi\)
\(420\) 0 0
\(421\) 7.19057 0.350447 0.175224 0.984529i \(-0.443935\pi\)
0.175224 + 0.984529i \(0.443935\pi\)
\(422\) 0 0
\(423\) −5.65911 −0.275155
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −21.8236 −1.05612
\(428\) 0 0
\(429\) 34.6022 1.67061
\(430\) 0 0
\(431\) −7.63181 −0.367611 −0.183806 0.982963i \(-0.558842\pi\)
−0.183806 + 0.982963i \(0.558842\pi\)
\(432\) 0 0
\(433\) 32.2894 1.55173 0.775865 0.630898i \(-0.217314\pi\)
0.775865 + 0.630898i \(0.217314\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −29.9193 −1.43124
\(438\) 0 0
\(439\) 13.3974 0.639422 0.319711 0.947515i \(-0.396414\pi\)
0.319711 + 0.947515i \(0.396414\pi\)
\(440\) 0 0
\(441\) −1.10104 −0.0524305
\(442\) 0 0
\(443\) 6.89070 0.327387 0.163693 0.986511i \(-0.447659\pi\)
0.163693 + 0.986511i \(0.447659\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 25.7912 1.21988
\(448\) 0 0
\(449\) 21.1778 0.999440 0.499720 0.866187i \(-0.333436\pi\)
0.499720 + 0.866187i \(0.333436\pi\)
\(450\) 0 0
\(451\) 7.85565 0.369908
\(452\) 0 0
\(453\) −4.05241 −0.190399
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 30.2321 1.41420 0.707100 0.707114i \(-0.250003\pi\)
0.707100 + 0.707114i \(0.250003\pi\)
\(458\) 0 0
\(459\) 5.65259 0.263840
\(460\) 0 0
\(461\) 3.74267 0.174314 0.0871568 0.996195i \(-0.472222\pi\)
0.0871568 + 0.996195i \(0.472222\pi\)
\(462\) 0 0
\(463\) 2.53452 0.117789 0.0588947 0.998264i \(-0.481242\pi\)
0.0588947 + 0.998264i \(0.481242\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −30.1170 −1.39365 −0.696824 0.717242i \(-0.745404\pi\)
−0.696824 + 0.717242i \(0.745404\pi\)
\(468\) 0 0
\(469\) 0.736705 0.0340179
\(470\) 0 0
\(471\) 5.21325 0.240214
\(472\) 0 0
\(473\) −4.97460 −0.228732
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −9.03104 −0.413503
\(478\) 0 0
\(479\) −14.4995 −0.662499 −0.331250 0.943543i \(-0.607470\pi\)
−0.331250 + 0.943543i \(0.607470\pi\)
\(480\) 0 0
\(481\) 20.7866 0.947787
\(482\) 0 0
\(483\) −18.7166 −0.851635
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 23.9424 1.08493 0.542467 0.840077i \(-0.317490\pi\)
0.542467 + 0.840077i \(0.317490\pi\)
\(488\) 0 0
\(489\) −19.8443 −0.897388
\(490\) 0 0
\(491\) 21.1295 0.953559 0.476780 0.879023i \(-0.341804\pi\)
0.476780 + 0.879023i \(0.341804\pi\)
\(492\) 0 0
\(493\) −0.658562 −0.0296601
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −3.40601 −0.152780
\(498\) 0 0
\(499\) −4.01027 −0.179524 −0.0897621 0.995963i \(-0.528611\pi\)
−0.0897621 + 0.995963i \(0.528611\pi\)
\(500\) 0 0
\(501\) −9.14726 −0.408670
\(502\) 0 0
\(503\) 1.44015 0.0642130 0.0321065 0.999484i \(-0.489778\pi\)
0.0321065 + 0.999484i \(0.489778\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −37.1553 −1.65013
\(508\) 0 0
\(509\) 31.1478 1.38060 0.690301 0.723522i \(-0.257478\pi\)
0.690301 + 0.723522i \(0.257478\pi\)
\(510\) 0 0
\(511\) −9.35054 −0.413644
\(512\) 0 0
\(513\) −37.4332 −1.65272
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 23.9331 1.05258
\(518\) 0 0
\(519\) −2.55469 −0.112138
\(520\) 0 0
\(521\) −39.1197 −1.71387 −0.856933 0.515428i \(-0.827633\pi\)
−0.856933 + 0.515428i \(0.827633\pi\)
\(522\) 0 0
\(523\) −40.4813 −1.77012 −0.885062 0.465473i \(-0.845884\pi\)
−0.885062 + 0.465473i \(0.845884\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −3.49984 −0.152455
\(528\) 0 0
\(529\) −2.58802 −0.112523
\(530\) 0 0
\(531\) −1.81940 −0.0789552
\(532\) 0 0
\(533\) −12.7023 −0.550198
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 1.60255 0.0691550
\(538\) 0 0
\(539\) 4.65645 0.200568
\(540\) 0 0
\(541\) −18.5288 −0.796614 −0.398307 0.917252i \(-0.630402\pi\)
−0.398307 + 0.917252i \(0.630402\pi\)
\(542\) 0 0
\(543\) 15.6593 0.672006
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 43.2959 1.85120 0.925600 0.378504i \(-0.123561\pi\)
0.925600 + 0.378504i \(0.123561\pi\)
\(548\) 0 0
\(549\) 6.92858 0.295705
\(550\) 0 0
\(551\) 4.36120 0.185793
\(552\) 0 0
\(553\) 14.3198 0.608942
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 25.3698 1.07495 0.537476 0.843279i \(-0.319378\pi\)
0.537476 + 0.843279i \(0.319378\pi\)
\(558\) 0 0
\(559\) 8.04375 0.340214
\(560\) 0 0
\(561\) −5.56229 −0.234840
\(562\) 0 0
\(563\) −35.6622 −1.50298 −0.751492 0.659742i \(-0.770665\pi\)
−0.751492 + 0.659742i \(0.770665\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −15.5972 −0.655021
\(568\) 0 0
\(569\) 27.7944 1.16520 0.582602 0.812758i \(-0.302035\pi\)
0.582602 + 0.812758i \(0.302035\pi\)
\(570\) 0 0
\(571\) 15.8578 0.663627 0.331813 0.943345i \(-0.392340\pi\)
0.331813 + 0.943345i \(0.392340\pi\)
\(572\) 0 0
\(573\) 4.61525 0.192805
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −25.2762 −1.05226 −0.526131 0.850403i \(-0.676358\pi\)
−0.526131 + 0.850403i \(0.676358\pi\)
\(578\) 0 0
\(579\) 10.2854 0.427448
\(580\) 0 0
\(581\) 22.6804 0.940940
\(582\) 0 0
\(583\) 38.1935 1.58181
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 15.7829 0.651431 0.325716 0.945468i \(-0.394395\pi\)
0.325716 + 0.945468i \(0.394395\pi\)
\(588\) 0 0
\(589\) 23.1770 0.954992
\(590\) 0 0
\(591\) −33.5019 −1.37809
\(592\) 0 0
\(593\) −19.3560 −0.794855 −0.397428 0.917634i \(-0.630097\pi\)
−0.397428 + 0.917634i \(0.630097\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −35.7299 −1.46233
\(598\) 0 0
\(599\) 15.8356 0.647023 0.323512 0.946224i \(-0.395136\pi\)
0.323512 + 0.946224i \(0.395136\pi\)
\(600\) 0 0
\(601\) 9.30443 0.379536 0.189768 0.981829i \(-0.439226\pi\)
0.189768 + 0.981829i \(0.439226\pi\)
\(602\) 0 0
\(603\) −0.233890 −0.00952473
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 26.6661 1.08234 0.541172 0.840912i \(-0.317981\pi\)
0.541172 + 0.840912i \(0.317981\pi\)
\(608\) 0 0
\(609\) 2.72823 0.110554
\(610\) 0 0
\(611\) −38.6990 −1.56560
\(612\) 0 0
\(613\) −26.0929 −1.05388 −0.526941 0.849902i \(-0.676661\pi\)
−0.526941 + 0.849902i \(0.676661\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −23.4622 −0.944554 −0.472277 0.881450i \(-0.656568\pi\)
−0.472277 + 0.881450i \(0.656568\pi\)
\(618\) 0 0
\(619\) −3.50613 −0.140923 −0.0704617 0.997514i \(-0.522447\pi\)
−0.0704617 + 0.997514i \(0.522447\pi\)
\(620\) 0 0
\(621\) 25.5382 1.02481
\(622\) 0 0
\(623\) 36.6804 1.46957
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 36.8352 1.47106
\(628\) 0 0
\(629\) −3.34144 −0.133232
\(630\) 0 0
\(631\) 7.57823 0.301685 0.150842 0.988558i \(-0.451801\pi\)
0.150842 + 0.988558i \(0.451801\pi\)
\(632\) 0 0
\(633\) −6.17550 −0.245454
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −7.52932 −0.298322
\(638\) 0 0
\(639\) 1.08134 0.0427772
\(640\) 0 0
\(641\) 4.21055 0.166307 0.0831535 0.996537i \(-0.473501\pi\)
0.0831535 + 0.996537i \(0.473501\pi\)
\(642\) 0 0
\(643\) −39.0726 −1.54087 −0.770437 0.637516i \(-0.779962\pi\)
−0.770437 + 0.637516i \(0.779962\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −27.0481 −1.06337 −0.531685 0.846942i \(-0.678441\pi\)
−0.531685 + 0.846942i \(0.678441\pi\)
\(648\) 0 0
\(649\) 7.69448 0.302035
\(650\) 0 0
\(651\) 14.4988 0.568253
\(652\) 0 0
\(653\) −35.6550 −1.39529 −0.697643 0.716445i \(-0.745768\pi\)
−0.697643 + 0.716445i \(0.745768\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 2.96862 0.115817
\(658\) 0 0
\(659\) −0.586716 −0.0228552 −0.0114276 0.999935i \(-0.503638\pi\)
−0.0114276 + 0.999935i \(0.503638\pi\)
\(660\) 0 0
\(661\) 18.8785 0.734290 0.367145 0.930164i \(-0.380335\pi\)
0.367145 + 0.930164i \(0.380335\pi\)
\(662\) 0 0
\(663\) 8.99403 0.349299
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −2.97536 −0.115206
\(668\) 0 0
\(669\) −5.28324 −0.204262
\(670\) 0 0
\(671\) −29.3019 −1.13119
\(672\) 0 0
\(673\) 44.9680 1.73339 0.866694 0.498841i \(-0.166241\pi\)
0.866694 + 0.498841i \(0.166241\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −33.3876 −1.28319 −0.641594 0.767044i \(-0.721727\pi\)
−0.641594 + 0.767044i \(0.721727\pi\)
\(678\) 0 0
\(679\) 11.7155 0.449601
\(680\) 0 0
\(681\) −27.4722 −1.05274
\(682\) 0 0
\(683\) −22.0237 −0.842713 −0.421357 0.906895i \(-0.638446\pi\)
−0.421357 + 0.906895i \(0.638446\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 30.1953 1.15202
\(688\) 0 0
\(689\) −61.7575 −2.35277
\(690\) 0 0
\(691\) −4.51396 −0.171719 −0.0858595 0.996307i \(-0.527364\pi\)
−0.0858595 + 0.996307i \(0.527364\pi\)
\(692\) 0 0
\(693\) −10.0283 −0.380944
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 2.04189 0.0773422
\(698\) 0 0
\(699\) −0.987294 −0.0373429
\(700\) 0 0
\(701\) −29.3948 −1.11023 −0.555114 0.831774i \(-0.687325\pi\)
−0.555114 + 0.831774i \(0.687325\pi\)
\(702\) 0 0
\(703\) 22.1280 0.834575
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 35.2070 1.32409
\(708\) 0 0
\(709\) −1.86205 −0.0699308 −0.0349654 0.999389i \(-0.511132\pi\)
−0.0349654 + 0.999389i \(0.511132\pi\)
\(710\) 0 0
\(711\) −4.54628 −0.170499
\(712\) 0 0
\(713\) −15.8121 −0.592169
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 41.9156 1.56537
\(718\) 0 0
\(719\) 15.8028 0.589346 0.294673 0.955598i \(-0.404789\pi\)
0.294673 + 0.955598i \(0.404789\pi\)
\(720\) 0 0
\(721\) 38.8610 1.44726
\(722\) 0 0
\(723\) 26.1605 0.972920
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 21.0930 0.782296 0.391148 0.920328i \(-0.372078\pi\)
0.391148 + 0.920328i \(0.372078\pi\)
\(728\) 0 0
\(729\) 29.4692 1.09145
\(730\) 0 0
\(731\) −1.29303 −0.0478244
\(732\) 0 0
\(733\) −40.8012 −1.50703 −0.753513 0.657434i \(-0.771642\pi\)
−0.753513 + 0.657434i \(0.771642\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0.989151 0.0364358
\(738\) 0 0
\(739\) −13.8161 −0.508234 −0.254117 0.967173i \(-0.581785\pi\)
−0.254117 + 0.967173i \(0.581785\pi\)
\(740\) 0 0
\(741\) −59.5613 −2.18804
\(742\) 0 0
\(743\) 3.01696 0.110682 0.0553408 0.998468i \(-0.482375\pi\)
0.0553408 + 0.998468i \(0.482375\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −7.20058 −0.263456
\(748\) 0 0
\(749\) −19.0203 −0.694987
\(750\) 0 0
\(751\) 44.6641 1.62982 0.814909 0.579589i \(-0.196787\pi\)
0.814909 + 0.579589i \(0.196787\pi\)
\(752\) 0 0
\(753\) −10.4288 −0.380047
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 12.3652 0.449421 0.224710 0.974426i \(-0.427856\pi\)
0.224710 + 0.974426i \(0.427856\pi\)
\(758\) 0 0
\(759\) −25.1302 −0.912169
\(760\) 0 0
\(761\) 16.7175 0.606009 0.303004 0.952989i \(-0.402010\pi\)
0.303004 + 0.952989i \(0.402010\pi\)
\(762\) 0 0
\(763\) −7.39385 −0.267675
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −12.4417 −0.449244
\(768\) 0 0
\(769\) 13.4025 0.483308 0.241654 0.970362i \(-0.422310\pi\)
0.241654 + 0.970362i \(0.422310\pi\)
\(770\) 0 0
\(771\) −7.05460 −0.254065
\(772\) 0 0
\(773\) 25.8358 0.929248 0.464624 0.885508i \(-0.346189\pi\)
0.464624 + 0.885508i \(0.346189\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 13.8426 0.496601
\(778\) 0 0
\(779\) −13.5220 −0.484477
\(780\) 0 0
\(781\) −4.57314 −0.163640
\(782\) 0 0
\(783\) −3.72258 −0.133034
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −45.2989 −1.61473 −0.807366 0.590051i \(-0.799108\pi\)
−0.807366 + 0.590051i \(0.799108\pi\)
\(788\) 0 0
\(789\) −43.4075 −1.54535
\(790\) 0 0
\(791\) 24.7362 0.879519
\(792\) 0 0
\(793\) 47.3802 1.68252
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 29.3607 1.04001 0.520005 0.854163i \(-0.325930\pi\)
0.520005 + 0.854163i \(0.325930\pi\)
\(798\) 0 0
\(799\) 6.22085 0.220078
\(800\) 0 0
\(801\) −11.6453 −0.411467
\(802\) 0 0
\(803\) −12.5547 −0.443045
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 42.8774 1.50936
\(808\) 0 0
\(809\) 5.04830 0.177489 0.0887444 0.996054i \(-0.471715\pi\)
0.0887444 + 0.996054i \(0.471715\pi\)
\(810\) 0 0
\(811\) −54.3374 −1.90805 −0.954023 0.299734i \(-0.903102\pi\)
−0.954023 + 0.299734i \(0.903102\pi\)
\(812\) 0 0
\(813\) 5.66202 0.198576
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 8.56284 0.299576
\(818\) 0 0
\(819\) 16.2154 0.566613
\(820\) 0 0
\(821\) 3.05948 0.106777 0.0533883 0.998574i \(-0.482998\pi\)
0.0533883 + 0.998574i \(0.482998\pi\)
\(822\) 0 0
\(823\) −6.87523 −0.239656 −0.119828 0.992795i \(-0.538234\pi\)
−0.119828 + 0.992795i \(0.538234\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −24.2438 −0.843040 −0.421520 0.906819i \(-0.638503\pi\)
−0.421520 + 0.906819i \(0.638503\pi\)
\(828\) 0 0
\(829\) 15.7734 0.547832 0.273916 0.961754i \(-0.411681\pi\)
0.273916 + 0.961754i \(0.411681\pi\)
\(830\) 0 0
\(831\) −0.658562 −0.0228453
\(832\) 0 0
\(833\) 1.21033 0.0419356
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −19.7831 −0.683806
\(838\) 0 0
\(839\) −9.98832 −0.344835 −0.172418 0.985024i \(-0.555158\pi\)
−0.172418 + 0.985024i \(0.555158\pi\)
\(840\) 0 0
\(841\) −28.5663 −0.985045
\(842\) 0 0
\(843\) −23.8470 −0.821334
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 10.8920 0.374255
\(848\) 0 0
\(849\) −12.7197 −0.436538
\(850\) 0 0
\(851\) −15.0965 −0.517501
\(852\) 0 0
\(853\) 31.1852 1.06776 0.533880 0.845560i \(-0.320734\pi\)
0.533880 + 0.845560i \(0.320734\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −26.4712 −0.904240 −0.452120 0.891957i \(-0.649332\pi\)
−0.452120 + 0.891957i \(0.649332\pi\)
\(858\) 0 0
\(859\) −22.7223 −0.775273 −0.387637 0.921812i \(-0.626708\pi\)
−0.387637 + 0.921812i \(0.626708\pi\)
\(860\) 0 0
\(861\) −8.45897 −0.288281
\(862\) 0 0
\(863\) 35.3962 1.20490 0.602451 0.798156i \(-0.294191\pi\)
0.602451 + 0.798156i \(0.294191\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −1.44579 −0.0491015
\(868\) 0 0
\(869\) 19.2268 0.652225
\(870\) 0 0
\(871\) −1.59942 −0.0541944
\(872\) 0 0
\(873\) −3.71946 −0.125885
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −1.09791 −0.0370736 −0.0185368 0.999828i \(-0.505901\pi\)
−0.0185368 + 0.999828i \(0.505901\pi\)
\(878\) 0 0
\(879\) −32.5335 −1.09733
\(880\) 0 0
\(881\) −16.5399 −0.557245 −0.278622 0.960401i \(-0.589878\pi\)
−0.278622 + 0.960401i \(0.589878\pi\)
\(882\) 0 0
\(883\) 22.1505 0.745425 0.372712 0.927947i \(-0.378428\pi\)
0.372712 + 0.927947i \(0.378428\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −19.5836 −0.657553 −0.328776 0.944408i \(-0.606636\pi\)
−0.328776 + 0.944408i \(0.606636\pi\)
\(888\) 0 0
\(889\) 9.29955 0.311897
\(890\) 0 0
\(891\) −20.9419 −0.701579
\(892\) 0 0
\(893\) −41.1964 −1.37859
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 40.6347 1.35675
\(898\) 0 0
\(899\) 2.30486 0.0768713
\(900\) 0 0
\(901\) 9.92750 0.330733
\(902\) 0 0
\(903\) 5.35665 0.178258
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 38.3180 1.27233 0.636165 0.771553i \(-0.280520\pi\)
0.636165 + 0.771553i \(0.280520\pi\)
\(908\) 0 0
\(909\) −11.1775 −0.370736
\(910\) 0 0
\(911\) 37.8395 1.25368 0.626840 0.779148i \(-0.284348\pi\)
0.626840 + 0.779148i \(0.284348\pi\)
\(912\) 0 0
\(913\) 30.4522 1.00782
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 9.87814 0.326205
\(918\) 0 0
\(919\) 28.8996 0.953309 0.476655 0.879091i \(-0.341849\pi\)
0.476655 + 0.879091i \(0.341849\pi\)
\(920\) 0 0
\(921\) −16.9206 −0.557552
\(922\) 0 0
\(923\) 7.39461 0.243397
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −12.3376 −0.405220
\(928\) 0 0
\(929\) −47.2978 −1.55179 −0.775895 0.630862i \(-0.782701\pi\)
−0.775895 + 0.630862i \(0.782701\pi\)
\(930\) 0 0
\(931\) −8.01521 −0.262688
\(932\) 0 0
\(933\) −30.4490 −0.996855
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 1.24572 0.0406958 0.0203479 0.999793i \(-0.493523\pi\)
0.0203479 + 0.999793i \(0.493523\pi\)
\(938\) 0 0
\(939\) 32.2281 1.05173
\(940\) 0 0
\(941\) 37.9458 1.23700 0.618499 0.785785i \(-0.287741\pi\)
0.618499 + 0.785785i \(0.287741\pi\)
\(942\) 0 0
\(943\) 9.22519 0.300413
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −52.2986 −1.69948 −0.849738 0.527205i \(-0.823240\pi\)
−0.849738 + 0.527205i \(0.823240\pi\)
\(948\) 0 0
\(949\) 20.3005 0.658982
\(950\) 0 0
\(951\) −40.2815 −1.30622
\(952\) 0 0
\(953\) −0.806914 −0.0261385 −0.0130693 0.999915i \(-0.504160\pi\)
−0.0130693 + 0.999915i \(0.504160\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 3.66311 0.118412
\(958\) 0 0
\(959\) −42.0833 −1.35894
\(960\) 0 0
\(961\) −18.7511 −0.604876
\(962\) 0 0
\(963\) 6.03858 0.194591
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 27.3892 0.880777 0.440388 0.897807i \(-0.354841\pi\)
0.440388 + 0.897807i \(0.354841\pi\)
\(968\) 0 0
\(969\) 9.57445 0.307576
\(970\) 0 0
\(971\) −26.7596 −0.858757 −0.429378 0.903125i \(-0.641267\pi\)
−0.429378 + 0.903125i \(0.641267\pi\)
\(972\) 0 0
\(973\) −40.0817 −1.28496
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −2.64662 −0.0846730 −0.0423365 0.999103i \(-0.513480\pi\)
−0.0423365 + 0.999103i \(0.513480\pi\)
\(978\) 0 0
\(979\) 49.2496 1.57402
\(980\) 0 0
\(981\) 2.34741 0.0749469
\(982\) 0 0
\(983\) 33.0275 1.05341 0.526707 0.850047i \(-0.323427\pi\)
0.526707 + 0.850047i \(0.323427\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −25.7712 −0.820307
\(988\) 0 0
\(989\) −5.84186 −0.185760
\(990\) 0 0
\(991\) 32.2132 1.02329 0.511643 0.859198i \(-0.329037\pi\)
0.511643 + 0.859198i \(0.329037\pi\)
\(992\) 0 0
\(993\) −18.8050 −0.596757
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −52.7919 −1.67194 −0.835969 0.548777i \(-0.815093\pi\)
−0.835969 + 0.548777i \(0.815093\pi\)
\(998\) 0 0
\(999\) −18.8878 −0.597583
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6800.2.a.bw.1.1 4
4.3 odd 2 425.2.a.g.1.3 4
5.2 odd 4 1360.2.e.d.1089.6 8
5.3 odd 4 1360.2.e.d.1089.3 8
5.4 even 2 6800.2.a.bt.1.4 4
12.11 even 2 3825.2.a.bj.1.2 4
20.3 even 4 85.2.b.a.69.5 yes 8
20.7 even 4 85.2.b.a.69.4 8
20.19 odd 2 425.2.a.h.1.2 4
60.23 odd 4 765.2.b.c.154.4 8
60.47 odd 4 765.2.b.c.154.5 8
60.59 even 2 3825.2.a.bh.1.3 4
68.67 odd 2 7225.2.a.v.1.3 4
340.67 even 4 1445.2.b.e.579.4 8
340.203 even 4 1445.2.b.e.579.5 8
340.339 odd 2 7225.2.a.w.1.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
85.2.b.a.69.4 8 20.7 even 4
85.2.b.a.69.5 yes 8 20.3 even 4
425.2.a.g.1.3 4 4.3 odd 2
425.2.a.h.1.2 4 20.19 odd 2
765.2.b.c.154.4 8 60.23 odd 4
765.2.b.c.154.5 8 60.47 odd 4
1360.2.e.d.1089.3 8 5.3 odd 4
1360.2.e.d.1089.6 8 5.2 odd 4
1445.2.b.e.579.4 8 340.67 even 4
1445.2.b.e.579.5 8 340.203 even 4
3825.2.a.bh.1.3 4 60.59 even 2
3825.2.a.bj.1.2 4 12.11 even 2
6800.2.a.bt.1.4 4 5.4 even 2
6800.2.a.bw.1.1 4 1.1 even 1 trivial
7225.2.a.v.1.3 4 68.67 odd 2
7225.2.a.w.1.2 4 340.339 odd 2