Properties

Label 765.2.b.c.154.4
Level $765$
Weight $2$
Character 765.154
Analytic conductor $6.109$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [765,2,Mod(154,765)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(765, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("765.154");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 765 = 3^{2} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 765.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.10855575463\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.619810816.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{5} + 14x^{4} - 8x^{3} + 2x^{2} + 2x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 85)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 154.4
Root \(-1.49094 - 1.49094i\) of defining polynomial
Character \(\chi\) \(=\) 765.154
Dual form 765.2.b.c.154.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.134632i q^{2} +1.98187 q^{4} +(1.29021 + 1.82630i) q^{5} +2.86537i q^{7} -0.536087i q^{8} +(0.245878 - 0.173703i) q^{10} +3.84724 q^{11} -6.22085i q^{13} +0.385770 q^{14} +3.89157 q^{16} +1.00000i q^{17} -6.62231 q^{19} +(2.55703 + 3.61949i) q^{20} -0.517961i q^{22} +4.51796i q^{23} +(-1.67072 + 4.71261i) q^{25} -0.837525 q^{26} +5.67880i q^{28} -0.658562 q^{29} +3.49984 q^{31} -1.59610i q^{32} +0.134632 q^{34} +(-5.23301 + 3.69693i) q^{35} +3.34144i q^{37} +0.891574i q^{38} +(0.979054 - 0.691665i) q^{40} -2.04189 q^{41} +1.29303i q^{43} +7.62475 q^{44} +0.608262 q^{46} -6.22085i q^{47} -1.21033 q^{49} +(0.634468 + 0.224932i) q^{50} -12.3290i q^{52} -9.92750i q^{53} +(4.96375 + 7.02621i) q^{55} +1.53609 q^{56} +0.0886634i q^{58} -2.00000 q^{59} -7.61634 q^{61} -0.471189i q^{62} +7.56826 q^{64} +(11.3611 - 8.02621i) q^{65} +0.257106i q^{67} +1.98187i q^{68} +(0.497724 + 0.704530i) q^{70} -1.18868 q^{71} -3.26330i q^{73} +0.449864 q^{74} -13.1246 q^{76} +11.0238i q^{77} +4.99756 q^{79} +(5.02095 + 7.10717i) q^{80} +0.274904i q^{82} +7.91534i q^{83} +(-1.82630 + 1.29021i) q^{85} +0.174083 q^{86} -2.06246i q^{88} +12.8013 q^{89} +17.8250 q^{91} +8.95403i q^{92} -0.837525 q^{94} +(-8.54417 - 12.0943i) q^{95} -4.08866i q^{97} +0.162950i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{4} + 2 q^{5} + 6 q^{10} + 4 q^{11} - 12 q^{14} - 8 q^{16} - 8 q^{19} + 2 q^{20} - 12 q^{25} - 8 q^{29} - 24 q^{31} + 4 q^{34} + 22 q^{40} + 12 q^{41} + 32 q^{44} - 8 q^{46} - 16 q^{49} - 44 q^{50}+ \cdots - 4 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/765\mathbb{Z}\right)^\times\).

\(n\) \(307\) \(496\) \(596\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.134632i 0.0951991i −0.998866 0.0475996i \(-0.984843\pi\)
0.998866 0.0475996i \(-0.0151571\pi\)
\(3\) 0 0
\(4\) 1.98187 0.990937
\(5\) 1.29021 + 1.82630i 0.576999 + 0.816745i
\(6\) 0 0
\(7\) 2.86537i 1.08301i 0.840698 + 0.541504i \(0.182145\pi\)
−0.840698 + 0.541504i \(0.817855\pi\)
\(8\) 0.536087i 0.189535i
\(9\) 0 0
\(10\) 0.245878 0.173703i 0.0777534 0.0549298i
\(11\) 3.84724 1.15999 0.579994 0.814621i \(-0.303055\pi\)
0.579994 + 0.814621i \(0.303055\pi\)
\(12\) 0 0
\(13\) 6.22085i 1.72535i −0.505755 0.862677i \(-0.668786\pi\)
0.505755 0.862677i \(-0.331214\pi\)
\(14\) 0.385770 0.103101
\(15\) 0 0
\(16\) 3.89157 0.972894
\(17\) 1.00000i 0.242536i
\(18\) 0 0
\(19\) −6.62231 −1.51926 −0.759631 0.650354i \(-0.774620\pi\)
−0.759631 + 0.650354i \(0.774620\pi\)
\(20\) 2.55703 + 3.61949i 0.571770 + 0.809343i
\(21\) 0 0
\(22\) 0.517961i 0.110430i
\(23\) 4.51796i 0.942060i 0.882117 + 0.471030i \(0.156118\pi\)
−0.882117 + 0.471030i \(0.843882\pi\)
\(24\) 0 0
\(25\) −1.67072 + 4.71261i −0.334144 + 0.942522i
\(26\) −0.837525 −0.164252
\(27\) 0 0
\(28\) 5.67880i 1.07319i
\(29\) −0.658562 −0.122292 −0.0611459 0.998129i \(-0.519476\pi\)
−0.0611459 + 0.998129i \(0.519476\pi\)
\(30\) 0 0
\(31\) 3.49984 0.628589 0.314295 0.949326i \(-0.398232\pi\)
0.314295 + 0.949326i \(0.398232\pi\)
\(32\) 1.59610i 0.282154i
\(33\) 0 0
\(34\) 0.134632 0.0230892
\(35\) −5.23301 + 3.69693i −0.884541 + 0.624894i
\(36\) 0 0
\(37\) 3.34144i 0.549329i 0.961540 + 0.274665i \(0.0885668\pi\)
−0.961540 + 0.274665i \(0.911433\pi\)
\(38\) 0.891574i 0.144632i
\(39\) 0 0
\(40\) 0.979054 0.691665i 0.154802 0.109362i
\(41\) −2.04189 −0.318890 −0.159445 0.987207i \(-0.550970\pi\)
−0.159445 + 0.987207i \(0.550970\pi\)
\(42\) 0 0
\(43\) 1.29303i 0.197185i 0.995128 + 0.0985926i \(0.0314341\pi\)
−0.995128 + 0.0985926i \(0.968566\pi\)
\(44\) 7.62475 1.14947
\(45\) 0 0
\(46\) 0.608262 0.0896833
\(47\) 6.22085i 0.907405i −0.891153 0.453702i \(-0.850103\pi\)
0.891153 0.453702i \(-0.149897\pi\)
\(48\) 0 0
\(49\) −1.21033 −0.172905
\(50\) 0.634468 + 0.224932i 0.0897273 + 0.0318102i
\(51\) 0 0
\(52\) 12.3290i 1.70972i
\(53\) 9.92750i 1.36365i −0.731517 0.681823i \(-0.761187\pi\)
0.731517 0.681823i \(-0.238813\pi\)
\(54\) 0 0
\(55\) 4.96375 + 7.02621i 0.669312 + 0.947413i
\(56\) 1.53609 0.205268
\(57\) 0 0
\(58\) 0.0886634i 0.0116421i
\(59\) −2.00000 −0.260378 −0.130189 0.991489i \(-0.541558\pi\)
−0.130189 + 0.991489i \(0.541558\pi\)
\(60\) 0 0
\(61\) −7.61634 −0.975173 −0.487586 0.873075i \(-0.662123\pi\)
−0.487586 + 0.873075i \(0.662123\pi\)
\(62\) 0.471189i 0.0598411i
\(63\) 0 0
\(64\) 7.56826 0.946033
\(65\) 11.3611 8.02621i 1.40917 0.995528i
\(66\) 0 0
\(67\) 0.257106i 0.0314106i 0.999877 + 0.0157053i \(0.00499935\pi\)
−0.999877 + 0.0157053i \(0.995001\pi\)
\(68\) 1.98187i 0.240338i
\(69\) 0 0
\(70\) 0.497724 + 0.704530i 0.0594894 + 0.0842075i
\(71\) −1.18868 −0.141070 −0.0705352 0.997509i \(-0.522471\pi\)
−0.0705352 + 0.997509i \(0.522471\pi\)
\(72\) 0 0
\(73\) 3.26330i 0.381940i −0.981596 0.190970i \(-0.938837\pi\)
0.981596 0.190970i \(-0.0611633\pi\)
\(74\) 0.449864 0.0522956
\(75\) 0 0
\(76\) −13.1246 −1.50549
\(77\) 11.0238i 1.25627i
\(78\) 0 0
\(79\) 4.99756 0.562269 0.281135 0.959668i \(-0.409289\pi\)
0.281135 + 0.959668i \(0.409289\pi\)
\(80\) 5.02095 + 7.10717i 0.561359 + 0.794606i
\(81\) 0 0
\(82\) 0.274904i 0.0303580i
\(83\) 7.91534i 0.868821i 0.900715 + 0.434411i \(0.143043\pi\)
−0.900715 + 0.434411i \(0.856957\pi\)
\(84\) 0 0
\(85\) −1.82630 + 1.29021i −0.198090 + 0.139943i
\(86\) 0.174083 0.0187719
\(87\) 0 0
\(88\) 2.06246i 0.219859i
\(89\) 12.8013 1.35693 0.678466 0.734632i \(-0.262645\pi\)
0.678466 + 0.734632i \(0.262645\pi\)
\(90\) 0 0
\(91\) 17.8250 1.86857
\(92\) 8.95403i 0.933522i
\(93\) 0 0
\(94\) −0.837525 −0.0863841
\(95\) −8.54417 12.0943i −0.876613 1.24085i
\(96\) 0 0
\(97\) 4.08866i 0.415141i −0.978220 0.207570i \(-0.933444\pi\)
0.978220 0.207570i \(-0.0665556\pi\)
\(98\) 0.162950i 0.0164604i
\(99\) 0 0
\(100\) −3.31116 + 9.33980i −0.331116 + 0.933980i
\(101\) −12.2871 −1.22261 −0.611304 0.791396i \(-0.709355\pi\)
−0.611304 + 0.791396i \(0.709355\pi\)
\(102\) 0 0
\(103\) 13.5623i 1.33633i −0.744012 0.668166i \(-0.767079\pi\)
0.744012 0.668166i \(-0.232921\pi\)
\(104\) −3.33492 −0.327016
\(105\) 0 0
\(106\) −1.33656 −0.129818
\(107\) 6.63800i 0.641719i 0.947127 + 0.320860i \(0.103972\pi\)
−0.947127 + 0.320860i \(0.896028\pi\)
\(108\) 0 0
\(109\) 2.58042 0.247159 0.123580 0.992335i \(-0.460563\pi\)
0.123580 + 0.992335i \(0.460563\pi\)
\(110\) 0.945951 0.668279i 0.0901929 0.0637179i
\(111\) 0 0
\(112\) 11.1508i 1.05365i
\(113\) 8.63283i 0.812108i −0.913849 0.406054i \(-0.866904\pi\)
0.913849 0.406054i \(-0.133096\pi\)
\(114\) 0 0
\(115\) −8.25114 + 5.82912i −0.769423 + 0.543568i
\(116\) −1.30519 −0.121184
\(117\) 0 0
\(118\) 0.269264i 0.0247877i
\(119\) −2.86537 −0.262668
\(120\) 0 0
\(121\) 3.80127 0.345570
\(122\) 1.02540i 0.0928356i
\(123\) 0 0
\(124\) 6.93623 0.622892
\(125\) −10.7622 + 3.02903i −0.962601 + 0.270924i
\(126\) 0 0
\(127\) 3.24550i 0.287991i 0.989578 + 0.143996i \(0.0459951\pi\)
−0.989578 + 0.143996i \(0.954005\pi\)
\(128\) 4.21114i 0.372216i
\(129\) 0 0
\(130\) −1.08058 1.52957i −0.0947734 0.134152i
\(131\) 3.44742 0.301203 0.150601 0.988595i \(-0.451879\pi\)
0.150601 + 0.988595i \(0.451879\pi\)
\(132\) 0 0
\(133\) 18.9754i 1.64537i
\(134\) 0.0346147 0.00299026
\(135\) 0 0
\(136\) 0.536087 0.0459691
\(137\) 14.6869i 1.25478i −0.778703 0.627392i \(-0.784122\pi\)
0.778703 0.627392i \(-0.215878\pi\)
\(138\) 0 0
\(139\) −13.9883 −1.18647 −0.593237 0.805028i \(-0.702150\pi\)
−0.593237 + 0.805028i \(0.702150\pi\)
\(140\) −10.3712 + 7.32684i −0.876524 + 0.619231i
\(141\) 0 0
\(142\) 0.160034i 0.0134298i
\(143\) 23.9331i 2.00139i
\(144\) 0 0
\(145\) −0.849683 1.20273i −0.0705623 0.0998812i
\(146\) −0.439344 −0.0363603
\(147\) 0 0
\(148\) 6.62231i 0.544351i
\(149\) −17.8388 −1.46141 −0.730707 0.682691i \(-0.760809\pi\)
−0.730707 + 0.682691i \(0.760809\pi\)
\(150\) 0 0
\(151\) −2.80291 −0.228098 −0.114049 0.993475i \(-0.536382\pi\)
−0.114049 + 0.993475i \(0.536382\pi\)
\(152\) 3.55014i 0.287954i
\(153\) 0 0
\(154\) 1.48415 0.119596
\(155\) 4.51552 + 6.39174i 0.362695 + 0.513397i
\(156\) 0 0
\(157\) 3.60582i 0.287776i 0.989594 + 0.143888i \(0.0459605\pi\)
−0.989594 + 0.143888i \(0.954040\pi\)
\(158\) 0.672831i 0.0535275i
\(159\) 0 0
\(160\) 2.91496 2.05931i 0.230448 0.162803i
\(161\) −12.9456 −1.02026
\(162\) 0 0
\(163\) 13.7256i 1.07507i −0.843242 0.537535i \(-0.819356\pi\)
0.843242 0.537535i \(-0.180644\pi\)
\(164\) −4.04677 −0.316000
\(165\) 0 0
\(166\) 1.06566 0.0827110
\(167\) 6.32684i 0.489586i −0.969575 0.244793i \(-0.921280\pi\)
0.969575 0.244793i \(-0.0787199\pi\)
\(168\) 0 0
\(169\) −25.6990 −1.97685
\(170\) 0.173703 + 0.245878i 0.0133224 + 0.0188580i
\(171\) 0 0
\(172\) 2.56262i 0.195398i
\(173\) 1.76699i 0.134342i −0.997741 0.0671708i \(-0.978603\pi\)
0.997741 0.0671708i \(-0.0213972\pi\)
\(174\) 0 0
\(175\) −13.5034 4.78723i −1.02076 0.361880i
\(176\) 14.9718 1.12854
\(177\) 0 0
\(178\) 1.72346i 0.129179i
\(179\) 1.10843 0.0828476 0.0414238 0.999142i \(-0.486811\pi\)
0.0414238 + 0.999142i \(0.486811\pi\)
\(180\) 0 0
\(181\) −10.8310 −0.805062 −0.402531 0.915406i \(-0.631870\pi\)
−0.402531 + 0.915406i \(0.631870\pi\)
\(182\) 2.39982i 0.177886i
\(183\) 0 0
\(184\) 2.42202 0.178554
\(185\) −6.10246 + 4.31116i −0.448662 + 0.316962i
\(186\) 0 0
\(187\) 3.84724i 0.281338i
\(188\) 12.3290i 0.899181i
\(189\) 0 0
\(190\) −1.62828 + 1.15032i −0.118128 + 0.0834528i
\(191\) −3.19221 −0.230980 −0.115490 0.993309i \(-0.536844\pi\)
−0.115490 + 0.993309i \(0.536844\pi\)
\(192\) 0 0
\(193\) 7.11407i 0.512082i −0.966666 0.256041i \(-0.917582\pi\)
0.966666 0.256041i \(-0.0824182\pi\)
\(194\) −0.550464 −0.0395210
\(195\) 0 0
\(196\) −2.39873 −0.171338
\(197\) 23.1721i 1.65095i 0.564442 + 0.825473i \(0.309091\pi\)
−0.564442 + 0.825473i \(0.690909\pi\)
\(198\) 0 0
\(199\) 24.7131 1.75186 0.875932 0.482434i \(-0.160247\pi\)
0.875932 + 0.482434i \(0.160247\pi\)
\(200\) 2.52637 + 0.895651i 0.178641 + 0.0633321i
\(201\) 0 0
\(202\) 1.65423i 0.116391i
\(203\) 1.88702i 0.132443i
\(204\) 0 0
\(205\) −2.63447 3.72910i −0.183999 0.260452i
\(206\) −1.82592 −0.127218
\(207\) 0 0
\(208\) 24.2089i 1.67859i
\(209\) −25.4776 −1.76232
\(210\) 0 0
\(211\) −4.27138 −0.294054 −0.147027 0.989133i \(-0.546970\pi\)
−0.147027 + 0.989133i \(0.546970\pi\)
\(212\) 19.6751i 1.35129i
\(213\) 0 0
\(214\) 0.893686 0.0610911
\(215\) −2.36146 + 1.66828i −0.161050 + 0.113776i
\(216\) 0 0
\(217\) 10.0283i 0.680767i
\(218\) 0.347407i 0.0235293i
\(219\) 0 0
\(220\) 9.83753 + 13.9251i 0.663246 + 0.938827i
\(221\) 6.22085 0.418460
\(222\) 0 0
\(223\) 3.65423i 0.244705i −0.992487 0.122353i \(-0.960956\pi\)
0.992487 0.122353i \(-0.0390439\pi\)
\(224\) 4.57343 0.305575
\(225\) 0 0
\(226\) −1.16225 −0.0773120
\(227\) 19.0016i 1.26118i −0.776117 0.630589i \(-0.782813\pi\)
0.776117 0.630589i \(-0.217187\pi\)
\(228\) 0 0
\(229\) 20.8851 1.38012 0.690062 0.723751i \(-0.257583\pi\)
0.690062 + 0.723751i \(0.257583\pi\)
\(230\) 0.784785 + 1.11087i 0.0517472 + 0.0732483i
\(231\) 0 0
\(232\) 0.353047i 0.0231786i
\(233\) 0.682876i 0.0447367i −0.999750 0.0223684i \(-0.992879\pi\)
0.999750 0.0223684i \(-0.00712066\pi\)
\(234\) 0 0
\(235\) 11.3611 8.02621i 0.741118 0.523572i
\(236\) −3.96375 −0.258018
\(237\) 0 0
\(238\) 0.385770i 0.0250057i
\(239\) 28.9915 1.87531 0.937653 0.347574i \(-0.112994\pi\)
0.937653 + 0.347574i \(0.112994\pi\)
\(240\) 0 0
\(241\) −18.0943 −1.16556 −0.582778 0.812631i \(-0.698034\pi\)
−0.582778 + 0.812631i \(0.698034\pi\)
\(242\) 0.511773i 0.0328980i
\(243\) 0 0
\(244\) −15.0946 −0.966335
\(245\) −1.56158 2.21043i −0.0997660 0.141219i
\(246\) 0 0
\(247\) 41.1964i 2.62127i
\(248\) 1.87622i 0.119140i
\(249\) 0 0
\(250\) 0.407803 + 1.44894i 0.0257918 + 0.0916387i
\(251\) 7.21325 0.455296 0.227648 0.973743i \(-0.426896\pi\)
0.227648 + 0.973743i \(0.426896\pi\)
\(252\) 0 0
\(253\) 17.3817i 1.09278i
\(254\) 0.436948 0.0274165
\(255\) 0 0
\(256\) 14.5696 0.910598
\(257\) 4.87942i 0.304370i 0.988352 + 0.152185i \(0.0486309\pi\)
−0.988352 + 0.152185i \(0.951369\pi\)
\(258\) 0 0
\(259\) −9.57445 −0.594927
\(260\) 22.5163 15.9069i 1.39640 0.986506i
\(261\) 0 0
\(262\) 0.464133i 0.0286742i
\(263\) 30.0234i 1.85132i 0.378351 + 0.925662i \(0.376491\pi\)
−0.378351 + 0.925662i \(0.623509\pi\)
\(264\) 0 0
\(265\) 18.1306 12.8086i 1.11375 0.786823i
\(266\) −2.55469 −0.156638
\(267\) 0 0
\(268\) 0.509553i 0.0311259i
\(269\) −29.6568 −1.80821 −0.904104 0.427312i \(-0.859460\pi\)
−0.904104 + 0.427312i \(0.859460\pi\)
\(270\) 0 0
\(271\) 3.91622 0.237893 0.118947 0.992901i \(-0.462048\pi\)
0.118947 + 0.992901i \(0.462048\pi\)
\(272\) 3.89157i 0.235961i
\(273\) 0 0
\(274\) −1.97732 −0.119454
\(275\) −6.42766 + 18.1306i −0.387603 + 1.09331i
\(276\) 0 0
\(277\) 0.455504i 0.0273686i −0.999906 0.0136843i \(-0.995644\pi\)
0.999906 0.0136843i \(-0.00435598\pi\)
\(278\) 1.88327i 0.112951i
\(279\) 0 0
\(280\) 1.98187 + 2.80535i 0.118440 + 0.167652i
\(281\) −16.4941 −0.983957 −0.491978 0.870607i \(-0.663726\pi\)
−0.491978 + 0.870607i \(0.663726\pi\)
\(282\) 0 0
\(283\) 8.79775i 0.522972i −0.965207 0.261486i \(-0.915788\pi\)
0.965207 0.261486i \(-0.0842125\pi\)
\(284\) −2.35582 −0.139792
\(285\) 0 0
\(286\) −3.22216 −0.190531
\(287\) 5.85077i 0.345360i
\(288\) 0 0
\(289\) −1.00000 −0.0588235
\(290\) −0.161926 + 0.114394i −0.00950860 + 0.00671747i
\(291\) 0 0
\(292\) 6.46744i 0.378478i
\(293\) 22.5023i 1.31460i −0.753630 0.657299i \(-0.771699\pi\)
0.753630 0.657299i \(-0.228301\pi\)
\(294\) 0 0
\(295\) −2.58042 3.65259i −0.150238 0.212662i
\(296\) 1.79130 0.104117
\(297\) 0 0
\(298\) 2.40168i 0.139125i
\(299\) 28.1056 1.62539
\(300\) 0 0
\(301\) −3.70501 −0.213553
\(302\) 0.377361i 0.0217147i
\(303\) 0 0
\(304\) −25.7712 −1.47808
\(305\) −9.82668 13.9097i −0.562674 0.796467i
\(306\) 0 0
\(307\) 11.7034i 0.667947i 0.942583 + 0.333973i \(0.108390\pi\)
−0.942583 + 0.333973i \(0.891610\pi\)
\(308\) 21.8477i 1.24489i
\(309\) 0 0
\(310\) 0.860532 0.607933i 0.0488749 0.0345283i
\(311\) 21.0605 1.19423 0.597115 0.802155i \(-0.296313\pi\)
0.597115 + 0.802155i \(0.296313\pi\)
\(312\) 0 0
\(313\) 22.2911i 1.25997i −0.776609 0.629983i \(-0.783062\pi\)
0.776609 0.629983i \(-0.216938\pi\)
\(314\) 0.485459 0.0273960
\(315\) 0 0
\(316\) 9.90453 0.557174
\(317\) 27.8613i 1.56485i 0.622747 + 0.782423i \(0.286016\pi\)
−0.622747 + 0.782423i \(0.713984\pi\)
\(318\) 0 0
\(319\) −2.53365 −0.141857
\(320\) 9.76464 + 13.8219i 0.545860 + 0.772667i
\(321\) 0 0
\(322\) 1.74289i 0.0971277i
\(323\) 6.62231i 0.368475i
\(324\) 0 0
\(325\) 29.3165 + 10.3933i 1.62618 + 0.576517i
\(326\) −1.84790 −0.102346
\(327\) 0 0
\(328\) 1.09463i 0.0604409i
\(329\) 17.8250 0.982726
\(330\) 0 0
\(331\) −13.0067 −0.714914 −0.357457 0.933930i \(-0.616356\pi\)
−0.357457 + 0.933930i \(0.616356\pi\)
\(332\) 15.6872i 0.860947i
\(333\) 0 0
\(334\) −0.851794 −0.0466081
\(335\) −0.469553 + 0.331721i −0.0256544 + 0.0181239i
\(336\) 0 0
\(337\) 15.1126i 0.823238i −0.911356 0.411619i \(-0.864963\pi\)
0.911356 0.411619i \(-0.135037\pi\)
\(338\) 3.45991i 0.188194i
\(339\) 0 0
\(340\) −3.61949 + 2.55703i −0.196294 + 0.138675i
\(341\) 13.4647 0.729155
\(342\) 0 0
\(343\) 16.5895i 0.895750i
\(344\) 0.693177 0.0373736
\(345\) 0 0
\(346\) −0.237893 −0.0127892
\(347\) 3.58828i 0.192629i 0.995351 + 0.0963144i \(0.0307054\pi\)
−0.995351 + 0.0963144i \(0.969295\pi\)
\(348\) 0 0
\(349\) −31.2851 −1.67465 −0.837326 0.546703i \(-0.815883\pi\)
−0.837326 + 0.546703i \(0.815883\pi\)
\(350\) −0.644513 + 1.81798i −0.0344507 + 0.0971753i
\(351\) 0 0
\(352\) 6.14060i 0.327295i
\(353\) 24.4417i 1.30090i −0.759549 0.650450i \(-0.774580\pi\)
0.759549 0.650450i \(-0.225420\pi\)
\(354\) 0 0
\(355\) −1.53365 2.17088i −0.0813975 0.115219i
\(356\) 25.3705 1.34463
\(357\) 0 0
\(358\) 0.149229i 0.00788702i
\(359\) −0.136195 −0.00718808 −0.00359404 0.999994i \(-0.501144\pi\)
−0.00359404 + 0.999994i \(0.501144\pi\)
\(360\) 0 0
\(361\) 24.8550 1.30816
\(362\) 1.45820i 0.0766412i
\(363\) 0 0
\(364\) 35.3270 1.85164
\(365\) 5.95975 4.21033i 0.311947 0.220379i
\(366\) 0 0
\(367\) 16.9896i 0.886851i −0.896311 0.443426i \(-0.853763\pi\)
0.896311 0.443426i \(-0.146237\pi\)
\(368\) 17.5820i 0.916524i
\(369\) 0 0
\(370\) 0.580419 + 0.821585i 0.0301745 + 0.0427122i
\(371\) 28.4459 1.47684
\(372\) 0 0
\(373\) 18.3533i 0.950296i 0.879906 + 0.475148i \(0.157606\pi\)
−0.879906 + 0.475148i \(0.842394\pi\)
\(374\) 0.517961 0.0267832
\(375\) 0 0
\(376\) −3.33492 −0.171985
\(377\) 4.09682i 0.210997i
\(378\) 0 0
\(379\) 35.1943 1.80781 0.903905 0.427732i \(-0.140687\pi\)
0.903905 + 0.427732i \(0.140687\pi\)
\(380\) −16.9335 23.9694i −0.868668 1.22960i
\(381\) 0 0
\(382\) 0.429773i 0.0219891i
\(383\) 10.8237i 0.553067i 0.961004 + 0.276533i \(0.0891856\pi\)
−0.961004 + 0.276533i \(0.910814\pi\)
\(384\) 0 0
\(385\) −20.1327 + 14.2230i −1.02606 + 0.724870i
\(386\) −0.957780 −0.0487497
\(387\) 0 0
\(388\) 8.10322i 0.411379i
\(389\) 0.174083 0.00882636 0.00441318 0.999990i \(-0.498595\pi\)
0.00441318 + 0.999990i \(0.498595\pi\)
\(390\) 0 0
\(391\) −4.51796 −0.228483
\(392\) 0.648845i 0.0327716i
\(393\) 0 0
\(394\) 3.11971 0.157169
\(395\) 6.44790 + 9.12703i 0.324429 + 0.459231i
\(396\) 0 0
\(397\) 2.75287i 0.138162i 0.997611 + 0.0690812i \(0.0220067\pi\)
−0.997611 + 0.0690812i \(0.977993\pi\)
\(398\) 3.32717i 0.166776i
\(399\) 0 0
\(400\) −6.50173 + 18.3395i −0.325086 + 0.916974i
\(401\) −33.9912 −1.69744 −0.848719 0.528843i \(-0.822626\pi\)
−0.848719 + 0.528843i \(0.822626\pi\)
\(402\) 0 0
\(403\) 21.7720i 1.08454i
\(404\) −24.3514 −1.21153
\(405\) 0 0
\(406\) −0.254053 −0.0126085
\(407\) 12.8553i 0.637215i
\(408\) 0 0
\(409\) 4.68288 0.231553 0.115777 0.993275i \(-0.463064\pi\)
0.115777 + 0.993275i \(0.463064\pi\)
\(410\) −0.502056 + 0.354683i −0.0247948 + 0.0175166i
\(411\) 0 0
\(412\) 26.8788i 1.32422i
\(413\) 5.73074i 0.281991i
\(414\) 0 0
\(415\) −14.4558 + 10.2124i −0.709605 + 0.501309i
\(416\) −9.92913 −0.486816
\(417\) 0 0
\(418\) 3.43010i 0.167772i
\(419\) −29.0991 −1.42158 −0.710792 0.703402i \(-0.751663\pi\)
−0.710792 + 0.703402i \(0.751663\pi\)
\(420\) 0 0
\(421\) 7.19057 0.350447 0.175224 0.984529i \(-0.443935\pi\)
0.175224 + 0.984529i \(0.443935\pi\)
\(422\) 0.575063i 0.0279936i
\(423\) 0 0
\(424\) −5.32200 −0.258459
\(425\) −4.71261 1.67072i −0.228595 0.0810418i
\(426\) 0 0
\(427\) 21.8236i 1.05612i
\(428\) 13.1557i 0.635903i
\(429\) 0 0
\(430\) 0.224604 + 0.317927i 0.0108313 + 0.0153318i
\(431\) −7.63181 −0.367611 −0.183806 0.982963i \(-0.558842\pi\)
−0.183806 + 0.982963i \(0.558842\pi\)
\(432\) 0 0
\(433\) 32.2894i 1.55173i 0.630898 + 0.775865i \(0.282686\pi\)
−0.630898 + 0.775865i \(0.717314\pi\)
\(434\) 1.35013 0.0648084
\(435\) 0 0
\(436\) 5.11407 0.244919
\(437\) 29.9193i 1.43124i
\(438\) 0 0
\(439\) 13.3974 0.639422 0.319711 0.947515i \(-0.396414\pi\)
0.319711 + 0.947515i \(0.396414\pi\)
\(440\) 3.76666 2.66100i 0.179568 0.126858i
\(441\) 0 0
\(442\) 0.837525i 0.0398370i
\(443\) 6.89070i 0.327387i 0.986511 + 0.163693i \(0.0523408\pi\)
−0.986511 + 0.163693i \(0.947659\pi\)
\(444\) 0 0
\(445\) 16.5163 + 23.3789i 0.782949 + 1.10827i
\(446\) −0.491976 −0.0232957
\(447\) 0 0
\(448\) 21.6859i 1.02456i
\(449\) 21.1778 0.999440 0.499720 0.866187i \(-0.333436\pi\)
0.499720 + 0.866187i \(0.333436\pi\)
\(450\) 0 0
\(451\) −7.85565 −0.369908
\(452\) 17.1092i 0.804748i
\(453\) 0 0
\(454\) −2.55822 −0.120063
\(455\) 22.9980 + 32.5538i 1.07816 + 1.52615i
\(456\) 0 0
\(457\) 30.2321i 1.41420i −0.707114 0.707100i \(-0.750003\pi\)
0.707114 0.707100i \(-0.249997\pi\)
\(458\) 2.81179i 0.131387i
\(459\) 0 0
\(460\) −16.3527 + 11.5526i −0.762449 + 0.538642i
\(461\) −3.74267 −0.174314 −0.0871568 0.996195i \(-0.527778\pi\)
−0.0871568 + 0.996195i \(0.527778\pi\)
\(462\) 0 0
\(463\) 2.53452i 0.117789i −0.998264 0.0588947i \(-0.981242\pi\)
0.998264 0.0588947i \(-0.0187576\pi\)
\(464\) −2.56284 −0.118977
\(465\) 0 0
\(466\) −0.0919369 −0.00425890
\(467\) 30.1170i 1.39365i 0.717242 + 0.696824i \(0.245404\pi\)
−0.717242 + 0.696824i \(0.754596\pi\)
\(468\) 0 0
\(469\) −0.736705 −0.0340179
\(470\) −1.08058 1.52957i −0.0498436 0.0705538i
\(471\) 0 0
\(472\) 1.07217i 0.0493508i
\(473\) 4.97460i 0.228732i
\(474\) 0 0
\(475\) 11.0640 31.2084i 0.507652 1.43194i
\(476\) −5.67880 −0.260287
\(477\) 0 0
\(478\) 3.90318i 0.178527i
\(479\) 14.4995 0.662499 0.331250 0.943543i \(-0.392530\pi\)
0.331250 + 0.943543i \(0.392530\pi\)
\(480\) 0 0
\(481\) 20.7866 0.947787
\(482\) 2.43607i 0.110960i
\(483\) 0 0
\(484\) 7.53365 0.342438
\(485\) 7.46711 5.27523i 0.339064 0.239536i
\(486\) 0 0
\(487\) 23.9424i 1.08493i 0.840077 + 0.542467i \(0.182510\pi\)
−0.840077 + 0.542467i \(0.817490\pi\)
\(488\) 4.08302i 0.184830i
\(489\) 0 0
\(490\) −0.297594 + 0.210239i −0.0134439 + 0.00949764i
\(491\) 21.1295 0.953559 0.476780 0.879023i \(-0.341804\pi\)
0.476780 + 0.879023i \(0.341804\pi\)
\(492\) 0 0
\(493\) 0.658562i 0.0296601i
\(494\) 5.54635 0.249542
\(495\) 0 0
\(496\) 13.6199 0.611550
\(497\) 3.40601i 0.152780i
\(498\) 0 0
\(499\) −4.01027 −0.179524 −0.0897621 0.995963i \(-0.528611\pi\)
−0.0897621 + 0.995963i \(0.528611\pi\)
\(500\) −21.3293 + 6.00315i −0.953877 + 0.268469i
\(501\) 0 0
\(502\) 0.971133i 0.0433438i
\(503\) 1.44015i 0.0642130i 0.999484 + 0.0321065i \(0.0102216\pi\)
−0.999484 + 0.0321065i \(0.989778\pi\)
\(504\) 0 0
\(505\) −15.8529 22.4398i −0.705444 0.998559i
\(506\) 2.34013 0.104031
\(507\) 0 0
\(508\) 6.43217i 0.285381i
\(509\) 31.1478 1.38060 0.690301 0.723522i \(-0.257478\pi\)
0.690301 + 0.723522i \(0.257478\pi\)
\(510\) 0 0
\(511\) 9.35054 0.413644
\(512\) 10.3838i 0.458904i
\(513\) 0 0
\(514\) 0.656925 0.0289757
\(515\) 24.7688 17.4982i 1.09144 0.771063i
\(516\) 0 0
\(517\) 23.9331i 1.05258i
\(518\) 1.28903i 0.0566366i
\(519\) 0 0
\(520\) −4.30275 6.09055i −0.188688 0.267088i
\(521\) 39.1197 1.71387 0.856933 0.515428i \(-0.172367\pi\)
0.856933 + 0.515428i \(0.172367\pi\)
\(522\) 0 0
\(523\) 40.4813i 1.77012i 0.465473 + 0.885062i \(0.345884\pi\)
−0.465473 + 0.885062i \(0.654116\pi\)
\(524\) 6.83236 0.298473
\(525\) 0 0
\(526\) 4.04211 0.176244
\(527\) 3.49984i 0.152455i
\(528\) 0 0
\(529\) 2.58802 0.112523
\(530\) −1.72444 2.44095i −0.0749049 0.106028i
\(531\) 0 0
\(532\) 37.6068i 1.63046i
\(533\) 12.7023i 0.550198i
\(534\) 0 0
\(535\) −12.1229 + 8.56440i −0.524121 + 0.370272i
\(536\) 0.137831 0.00595341
\(537\) 0 0
\(538\) 3.99275i 0.172140i
\(539\) −4.65645 −0.200568
\(540\) 0 0
\(541\) −18.5288 −0.796614 −0.398307 0.917252i \(-0.630402\pi\)
−0.398307 + 0.917252i \(0.630402\pi\)
\(542\) 0.527248i 0.0226472i
\(543\) 0 0
\(544\) 1.59610 0.0684324
\(545\) 3.32928 + 4.71261i 0.142611 + 0.201866i
\(546\) 0 0
\(547\) 43.2959i 1.85120i 0.378504 + 0.925600i \(0.376439\pi\)
−0.378504 + 0.925600i \(0.623561\pi\)
\(548\) 29.1075i 1.24341i
\(549\) 0 0
\(550\) 2.44095 + 0.865368i 0.104082 + 0.0368994i
\(551\) 4.36120 0.185793
\(552\) 0 0
\(553\) 14.3198i 0.608942i
\(554\) −0.0613254 −0.00260546
\(555\) 0 0
\(556\) −27.7231 −1.17572
\(557\) 25.3698i 1.07495i 0.843279 + 0.537476i \(0.180622\pi\)
−0.843279 + 0.537476i \(0.819378\pi\)
\(558\) 0 0
\(559\) 8.04375 0.340214
\(560\) −20.3647 + 14.3869i −0.860564 + 0.607956i
\(561\) 0 0
\(562\) 2.22063i 0.0936718i
\(563\) 35.6622i 1.50298i −0.659742 0.751492i \(-0.729335\pi\)
0.659742 0.751492i \(-0.270665\pi\)
\(564\) 0 0
\(565\) 15.7661 11.1382i 0.663285 0.468586i
\(566\) −1.18446 −0.0497864
\(567\) 0 0
\(568\) 0.637236i 0.0267378i
\(569\) 27.7944 1.16520 0.582602 0.812758i \(-0.302035\pi\)
0.582602 + 0.812758i \(0.302035\pi\)
\(570\) 0 0
\(571\) −15.8578 −0.663627 −0.331813 0.943345i \(-0.607660\pi\)
−0.331813 + 0.943345i \(0.607660\pi\)
\(572\) 47.4325i 1.98325i
\(573\) 0 0
\(574\) −0.787700 −0.0328780
\(575\) −21.2914 7.54824i −0.887912 0.314784i
\(576\) 0 0
\(577\) 25.2762i 1.05226i 0.850403 + 0.526131i \(0.176358\pi\)
−0.850403 + 0.526131i \(0.823642\pi\)
\(578\) 0.134632i 0.00559995i
\(579\) 0 0
\(580\) −1.68396 2.38366i −0.0699228 0.0989760i
\(581\) −22.6804 −0.940940
\(582\) 0 0
\(583\) 38.1935i 1.58181i
\(584\) −1.74941 −0.0723911
\(585\) 0 0
\(586\) −3.02952 −0.125148
\(587\) 15.7829i 0.651431i −0.945468 0.325716i \(-0.894395\pi\)
0.945468 0.325716i \(-0.105605\pi\)
\(588\) 0 0
\(589\) −23.1770 −0.954992
\(590\) −0.491756 + 0.347407i −0.0202453 + 0.0143025i
\(591\) 0 0
\(592\) 13.0035i 0.534439i
\(593\) 19.3560i 0.794855i 0.917634 + 0.397428i \(0.130097\pi\)
−0.917634 + 0.397428i \(0.869903\pi\)
\(594\) 0 0
\(595\) −3.69693 5.23301i −0.151559 0.214533i
\(596\) −35.3543 −1.44817
\(597\) 0 0
\(598\) 3.78391i 0.154735i
\(599\) −15.8356 −0.647023 −0.323512 0.946224i \(-0.604864\pi\)
−0.323512 + 0.946224i \(0.604864\pi\)
\(600\) 0 0
\(601\) 9.30443 0.379536 0.189768 0.981829i \(-0.439226\pi\)
0.189768 + 0.981829i \(0.439226\pi\)
\(602\) 0.498812i 0.0203301i
\(603\) 0 0
\(604\) −5.55502 −0.226030
\(605\) 4.90444 + 6.94225i 0.199394 + 0.282243i
\(606\) 0 0
\(607\) 26.6661i 1.08234i 0.840912 + 0.541172i \(0.182019\pi\)
−0.840912 + 0.541172i \(0.817981\pi\)
\(608\) 10.5699i 0.428666i
\(609\) 0 0
\(610\) −1.87269 + 1.32298i −0.0758230 + 0.0535661i
\(611\) −38.6990 −1.56560
\(612\) 0 0
\(613\) 26.0929i 1.05388i −0.849902 0.526941i \(-0.823339\pi\)
0.849902 0.526941i \(-0.176661\pi\)
\(614\) 1.57565 0.0635879
\(615\) 0 0
\(616\) 5.90970 0.238109
\(617\) 23.4622i 0.944554i −0.881450 0.472277i \(-0.843432\pi\)
0.881450 0.472277i \(-0.156568\pi\)
\(618\) 0 0
\(619\) −3.50613 −0.140923 −0.0704617 0.997514i \(-0.522447\pi\)
−0.0704617 + 0.997514i \(0.522447\pi\)
\(620\) 8.94920 + 12.6676i 0.359408 + 0.508744i
\(621\) 0 0
\(622\) 2.83541i 0.113690i
\(623\) 36.6804i 1.46957i
\(624\) 0 0
\(625\) −19.4174 15.7469i −0.776696 0.629876i
\(626\) −3.00109 −0.119948
\(627\) 0 0
\(628\) 7.14628i 0.285168i
\(629\) −3.34144 −0.133232
\(630\) 0 0
\(631\) −7.57823 −0.301685 −0.150842 0.988558i \(-0.548199\pi\)
−0.150842 + 0.988558i \(0.548199\pi\)
\(632\) 2.67913i 0.106570i
\(633\) 0 0
\(634\) 3.75102 0.148972
\(635\) −5.92724 + 4.18737i −0.235215 + 0.166171i
\(636\) 0 0
\(637\) 7.52932i 0.298322i
\(638\) 0.341110i 0.0135047i
\(639\) 0 0
\(640\) 7.69079 5.43325i 0.304005 0.214768i
\(641\) −4.21055 −0.166307 −0.0831535 0.996537i \(-0.526499\pi\)
−0.0831535 + 0.996537i \(0.526499\pi\)
\(642\) 0 0
\(643\) 39.0726i 1.54087i 0.637516 + 0.770437i \(0.279962\pi\)
−0.637516 + 0.770437i \(0.720038\pi\)
\(644\) −25.6566 −1.01101
\(645\) 0 0
\(646\) −0.891574 −0.0350785
\(647\) 27.0481i 1.06337i 0.846942 + 0.531685i \(0.178441\pi\)
−0.846942 + 0.531685i \(0.821559\pi\)
\(648\) 0 0
\(649\) −7.69448 −0.302035
\(650\) 1.39927 3.94693i 0.0548839 0.154811i
\(651\) 0 0
\(652\) 27.2024i 1.06533i
\(653\) 35.6550i 1.39529i 0.716445 + 0.697643i \(0.245768\pi\)
−0.716445 + 0.697643i \(0.754232\pi\)
\(654\) 0 0
\(655\) 4.44790 + 6.29602i 0.173794 + 0.246006i
\(656\) −7.94617 −0.310246
\(657\) 0 0
\(658\) 2.39982i 0.0935547i
\(659\) 0.586716 0.0228552 0.0114276 0.999935i \(-0.496362\pi\)
0.0114276 + 0.999935i \(0.496362\pi\)
\(660\) 0 0
\(661\) 18.8785 0.734290 0.367145 0.930164i \(-0.380335\pi\)
0.367145 + 0.930164i \(0.380335\pi\)
\(662\) 1.75112i 0.0680592i
\(663\) 0 0
\(664\) 4.24331 0.164672
\(665\) 34.6546 24.4822i 1.34385 0.949378i
\(666\) 0 0
\(667\) 2.97536i 0.115206i
\(668\) 12.5390i 0.485149i
\(669\) 0 0
\(670\) 0.0446602 + 0.0632168i 0.00172538 + 0.00244228i
\(671\) −29.3019 −1.13119
\(672\) 0 0
\(673\) 44.9680i 1.73339i 0.498841 + 0.866694i \(0.333759\pi\)
−0.498841 + 0.866694i \(0.666241\pi\)
\(674\) −2.03464 −0.0783716
\(675\) 0 0
\(676\) −50.9323 −1.95893
\(677\) 33.3876i 1.28319i −0.767044 0.641594i \(-0.778273\pi\)
0.767044 0.641594i \(-0.221727\pi\)
\(678\) 0 0
\(679\) 11.7155 0.449601
\(680\) 0.691665 + 0.979054i 0.0265241 + 0.0375450i
\(681\) 0 0
\(682\) 1.81278i 0.0694149i
\(683\) 22.0237i 0.842713i −0.906895 0.421357i \(-0.861554\pi\)
0.906895 0.421357i \(-0.138446\pi\)
\(684\) 0 0
\(685\) 26.8226 18.9492i 1.02484 0.724010i
\(686\) 2.23348 0.0852746
\(687\) 0 0
\(688\) 5.03192i 0.191840i
\(689\) −61.7575 −2.35277
\(690\) 0 0
\(691\) 4.51396 0.171719 0.0858595 0.996307i \(-0.472636\pi\)
0.0858595 + 0.996307i \(0.472636\pi\)
\(692\) 3.50195i 0.133124i
\(693\) 0 0
\(694\) 0.483097 0.0183381
\(695\) −18.0479 25.5468i −0.684594 0.969046i
\(696\) 0 0
\(697\) 2.04189i 0.0773422i
\(698\) 4.21197i 0.159425i
\(699\) 0 0
\(700\) −26.7620 9.48768i −1.01151 0.358601i
\(701\) 29.3948 1.11023 0.555114 0.831774i \(-0.312675\pi\)
0.555114 + 0.831774i \(0.312675\pi\)
\(702\) 0 0
\(703\) 22.1280i 0.834575i
\(704\) 29.1169 1.09739
\(705\) 0 0
\(706\) −3.29063 −0.123845
\(707\) 35.2070i 1.32409i
\(708\) 0 0
\(709\) 1.86205 0.0699308 0.0349654 0.999389i \(-0.488868\pi\)
0.0349654 + 0.999389i \(0.488868\pi\)
\(710\) −0.292270 + 0.206478i −0.0109687 + 0.00774897i
\(711\) 0 0
\(712\) 6.86260i 0.257187i
\(713\) 15.8121i 0.592169i
\(714\) 0 0
\(715\) 43.7090 30.8788i 1.63462 1.15480i
\(716\) 2.19676 0.0820968
\(717\) 0 0
\(718\) 0.0183362i 0.000684299i
\(719\) −15.8028 −0.589346 −0.294673 0.955598i \(-0.595211\pi\)
−0.294673 + 0.955598i \(0.595211\pi\)
\(720\) 0 0
\(721\) 38.8610 1.44726
\(722\) 3.34627i 0.124535i
\(723\) 0 0
\(724\) −21.4657 −0.797766
\(725\) 1.10027 3.10355i 0.0408631 0.115263i
\(726\) 0 0
\(727\) 21.0930i 0.782296i 0.920328 + 0.391148i \(0.127922\pi\)
−0.920328 + 0.391148i \(0.872078\pi\)
\(728\) 9.55578i 0.354161i
\(729\) 0 0
\(730\) −0.566845 0.802372i −0.0209799 0.0296971i
\(731\) −1.29303 −0.0478244
\(732\) 0 0
\(733\) 40.8012i 1.50703i −0.657434 0.753513i \(-0.728358\pi\)
0.657434 0.753513i \(-0.271642\pi\)
\(734\) −2.28735 −0.0844275
\(735\) 0 0
\(736\) 7.21114 0.265806
\(737\) 0.989151i 0.0364358i
\(738\) 0 0
\(739\) −13.8161 −0.508234 −0.254117 0.967173i \(-0.581785\pi\)
−0.254117 + 0.967173i \(0.581785\pi\)
\(740\) −12.0943 + 8.54417i −0.444595 + 0.314090i
\(741\) 0 0
\(742\) 3.82973i 0.140594i
\(743\) 3.01696i 0.110682i 0.998468 + 0.0553408i \(0.0176245\pi\)
−0.998468 + 0.0553408i \(0.982375\pi\)
\(744\) 0 0
\(745\) −23.0158 32.5790i −0.843235 1.19360i
\(746\) 2.47093 0.0904674
\(747\) 0 0
\(748\) 7.62475i 0.278788i
\(749\) −19.0203 −0.694987
\(750\) 0 0
\(751\) −44.6641 −1.62982 −0.814909 0.579589i \(-0.803213\pi\)
−0.814909 + 0.579589i \(0.803213\pi\)
\(752\) 24.2089i 0.882808i
\(753\) 0 0
\(754\) 0.551562 0.0200867
\(755\) −3.61634 5.11895i −0.131612 0.186298i
\(756\) 0 0
\(757\) 12.3652i 0.449421i −0.974426 0.224710i \(-0.927856\pi\)
0.974426 0.224710i \(-0.0721436\pi\)
\(758\) 4.73828i 0.172102i
\(759\) 0 0
\(760\) −6.48360 + 4.58042i −0.235185 + 0.166149i
\(761\) −16.7175 −0.606009 −0.303004 0.952989i \(-0.597990\pi\)
−0.303004 + 0.952989i \(0.597990\pi\)
\(762\) 0 0
\(763\) 7.39385i 0.267675i
\(764\) −6.32656 −0.228887
\(765\) 0 0
\(766\) 1.45722 0.0526515
\(767\) 12.4417i 0.449244i
\(768\) 0 0
\(769\) −13.4025 −0.483308 −0.241654 0.970362i \(-0.577690\pi\)
−0.241654 + 0.970362i \(0.577690\pi\)
\(770\) 1.91486 + 2.71050i 0.0690069 + 0.0976796i
\(771\) 0 0
\(772\) 14.0992i 0.507441i
\(773\) 25.8358i 0.929248i −0.885508 0.464624i \(-0.846189\pi\)
0.885508 0.464624i \(-0.153811\pi\)
\(774\) 0 0
\(775\) −5.84724 + 16.4934i −0.210039 + 0.592459i
\(776\) −2.19188 −0.0786839
\(777\) 0 0
\(778\) 0.0234371i 0.000840261i
\(779\) 13.5220 0.484477
\(780\) 0 0
\(781\) −4.57314 −0.163640
\(782\) 0.608262i 0.0217514i
\(783\) 0 0
\(784\) −4.71011 −0.168218
\(785\) −6.58530 + 4.65226i −0.235039 + 0.166046i
\(786\) 0 0
\(787\) 45.2989i 1.61473i −0.590051 0.807366i \(-0.700892\pi\)
0.590051 0.807366i \(-0.299108\pi\)
\(788\) 45.9242i 1.63598i
\(789\) 0 0
\(790\) 1.22879 0.868093i 0.0437183 0.0308854i
\(791\) 24.7362 0.879519
\(792\) 0 0
\(793\) 47.3802i 1.68252i
\(794\) 0.370623 0.0131529
\(795\) 0 0
\(796\) 48.9782 1.73599
\(797\) 29.3607i 1.04001i 0.854163 + 0.520005i \(0.174070\pi\)
−0.854163 + 0.520005i \(0.825930\pi\)
\(798\) 0 0
\(799\) 6.22085 0.220078
\(800\) 7.52182 + 2.66664i 0.265936 + 0.0942800i
\(801\) 0 0
\(802\) 4.57630i 0.161595i
\(803\) 12.5547i 0.443045i
\(804\) 0 0
\(805\) −16.7026 23.6425i −0.588688 0.833290i
\(806\) −2.93120 −0.103247
\(807\) 0 0
\(808\) 6.58694i 0.231728i
\(809\) 5.04830 0.177489 0.0887444 0.996054i \(-0.471715\pi\)
0.0887444 + 0.996054i \(0.471715\pi\)
\(810\) 0 0
\(811\) 54.3374 1.90805 0.954023 0.299734i \(-0.0968981\pi\)
0.954023 + 0.299734i \(0.0968981\pi\)
\(812\) 3.73984i 0.131243i
\(813\) 0 0
\(814\) 1.73074 0.0606623
\(815\) 25.0670 17.7089i 0.878057 0.620314i
\(816\) 0 0
\(817\) 8.56284i 0.299576i
\(818\) 0.630464i 0.0220437i
\(819\) 0 0
\(820\) −5.22118 7.39061i −0.182332 0.258091i
\(821\) −3.05948 −0.106777 −0.0533883 0.998574i \(-0.517002\pi\)
−0.0533883 + 0.998574i \(0.517002\pi\)
\(822\) 0 0
\(823\) 6.87523i 0.239656i 0.992795 + 0.119828i \(0.0382342\pi\)
−0.992795 + 0.119828i \(0.961766\pi\)
\(824\) −7.27057 −0.253282
\(825\) 0 0
\(826\) −0.771540 −0.0268453
\(827\) 24.2438i 0.843040i 0.906819 + 0.421520i \(0.138503\pi\)
−0.906819 + 0.421520i \(0.861497\pi\)
\(828\) 0 0
\(829\) −15.7734 −0.547832 −0.273916 0.961754i \(-0.588319\pi\)
−0.273916 + 0.961754i \(0.588319\pi\)
\(830\) 1.37492 + 1.94621i 0.0477242 + 0.0675538i
\(831\) 0 0
\(832\) 47.0811i 1.63224i
\(833\) 1.21033i 0.0419356i
\(834\) 0 0
\(835\) 11.5547 8.16295i 0.399866 0.282491i
\(836\) −50.4935 −1.74635
\(837\) 0 0
\(838\) 3.91767i 0.135334i
\(839\) 9.98832 0.344835 0.172418 0.985024i \(-0.444842\pi\)
0.172418 + 0.985024i \(0.444842\pi\)
\(840\) 0 0
\(841\) −28.5663 −0.985045
\(842\) 0.968080i 0.0333622i
\(843\) 0 0
\(844\) −8.46533 −0.291389
\(845\) −33.1571 46.9341i −1.14064 1.61458i
\(846\) 0 0
\(847\) 10.8920i 0.374255i
\(848\) 38.6336i 1.32668i
\(849\) 0 0
\(850\) −0.224932 + 0.634468i −0.00771511 + 0.0217621i
\(851\) −15.0965 −0.517501
\(852\) 0 0
\(853\) 31.1852i 1.06776i 0.845560 + 0.533880i \(0.179266\pi\)
−0.845560 + 0.533880i \(0.820734\pi\)
\(854\) −2.93816 −0.100542
\(855\) 0 0
\(856\) 3.55854 0.121629
\(857\) 26.4712i 0.904240i −0.891957 0.452120i \(-0.850668\pi\)
0.891957 0.452120i \(-0.149332\pi\)
\(858\) 0 0
\(859\) −22.7223 −0.775273 −0.387637 0.921812i \(-0.626708\pi\)
−0.387637 + 0.921812i \(0.626708\pi\)
\(860\) −4.68011 + 3.30632i −0.159590 + 0.112745i
\(861\) 0 0
\(862\) 1.02748i 0.0349963i
\(863\) 35.3962i 1.20490i 0.798156 + 0.602451i \(0.205809\pi\)
−0.798156 + 0.602451i \(0.794191\pi\)
\(864\) 0 0
\(865\) 3.22704 2.27978i 0.109723 0.0775150i
\(866\) 4.34719 0.147723
\(867\) 0 0
\(868\) 19.8749i 0.674597i
\(869\) 19.2268 0.652225
\(870\) 0 0
\(871\) 1.59942 0.0541944
\(872\) 1.38333i 0.0468455i
\(873\) 0 0
\(874\) −4.02810 −0.136252
\(875\) −8.67927 30.8377i −0.293413 1.04250i
\(876\) 0 0
\(877\) 1.09791i 0.0370736i 0.999828 + 0.0185368i \(0.00590079\pi\)
−0.999828 + 0.0185368i \(0.994099\pi\)
\(878\) 1.80371i 0.0608724i
\(879\) 0 0
\(880\) 19.3168 + 27.3430i 0.651169 + 0.921732i
\(881\) 16.5399 0.557245 0.278622 0.960401i \(-0.410122\pi\)
0.278622 + 0.960401i \(0.410122\pi\)
\(882\) 0 0
\(883\) 22.1505i 0.745425i −0.927947 0.372712i \(-0.878428\pi\)
0.927947 0.372712i \(-0.121572\pi\)
\(884\) 12.3290 0.414668
\(885\) 0 0
\(886\) 0.927707 0.0311669
\(887\) 19.5836i 0.657553i 0.944408 + 0.328776i \(0.106636\pi\)
−0.944408 + 0.328776i \(0.893364\pi\)
\(888\) 0 0
\(889\) −9.29955 −0.311897
\(890\) 3.14755 2.22362i 0.105506 0.0745360i
\(891\) 0 0
\(892\) 7.24222i 0.242488i
\(893\) 41.1964i 1.37859i
\(894\) 0 0
\(895\) 1.43010 + 2.02431i 0.0478030 + 0.0676654i
\(896\) 12.0665 0.403112
\(897\) 0 0
\(898\) 2.85120i 0.0951458i
\(899\) −2.30486 −0.0768713
\(900\) 0 0
\(901\) 9.92750 0.330733
\(902\) 1.05762i 0.0352149i
\(903\) 0 0
\(904\) −4.62795 −0.153923
\(905\) −13.9743 19.7806i −0.464520 0.657531i
\(906\) 0 0
\(907\) 38.3180i 1.27233i 0.771553 + 0.636165i \(0.219480\pi\)
−0.771553 + 0.636165i \(0.780520\pi\)
\(908\) 37.6587i 1.24975i
\(909\) 0 0
\(910\) 4.38278 3.09627i 0.145288 0.102640i
\(911\) 37.8395 1.25368 0.626840 0.779148i \(-0.284348\pi\)
0.626840 + 0.779148i \(0.284348\pi\)
\(912\) 0 0
\(913\) 30.4522i 1.00782i
\(914\) −4.07021 −0.134631
\(915\) 0 0
\(916\) 41.3916 1.36762
\(917\) 9.87814i 0.326205i
\(918\) 0 0
\(919\) 28.8996 0.953309 0.476655 0.879091i \(-0.341849\pi\)
0.476655 + 0.879091i \(0.341849\pi\)
\(920\) 3.12491 + 4.42333i 0.103025 + 0.145833i
\(921\) 0 0
\(922\) 0.503883i 0.0165945i
\(923\) 7.39461i 0.243397i
\(924\) 0 0
\(925\) −15.7469 5.58260i −0.517755 0.183555i
\(926\) −0.341228 −0.0112134
\(927\) 0 0
\(928\) 1.05113i 0.0345051i
\(929\) −47.2978 −1.55179 −0.775895 0.630862i \(-0.782701\pi\)
−0.775895 + 0.630862i \(0.782701\pi\)
\(930\) 0 0
\(931\) 8.01521 0.262688
\(932\) 1.35338i 0.0443313i
\(933\) 0 0
\(934\) 4.05471 0.132674
\(935\) −7.02621 + 4.96375i −0.229782 + 0.162332i
\(936\) 0 0
\(937\) 1.24572i 0.0406958i −0.999793 0.0203479i \(-0.993523\pi\)
0.999793 0.0203479i \(-0.00647739\pi\)
\(938\) 0.0991839i 0.00323847i
\(939\) 0 0
\(940\) 22.5163 15.9069i 0.734402 0.518827i
\(941\) −37.9458 −1.23700 −0.618499 0.785785i \(-0.712259\pi\)
−0.618499 + 0.785785i \(0.712259\pi\)
\(942\) 0 0
\(943\) 9.22519i 0.300413i
\(944\) −7.78315 −0.253320
\(945\) 0 0
\(946\) 0.669739 0.0217751
\(947\) 52.2986i 1.69948i 0.527205 + 0.849738i \(0.323240\pi\)
−0.527205 + 0.849738i \(0.676760\pi\)
\(948\) 0 0
\(949\) −20.3005 −0.658982
\(950\) −4.20164 1.48957i −0.136319 0.0483280i
\(951\) 0 0
\(952\) 1.53609i 0.0497849i
\(953\) 0.806914i 0.0261385i 0.999915 + 0.0130693i \(0.00416019\pi\)
−0.999915 + 0.0130693i \(0.995840\pi\)
\(954\) 0 0
\(955\) −4.11862 5.82992i −0.133275 0.188652i
\(956\) 57.4575 1.85831
\(957\) 0 0
\(958\) 1.95210i 0.0630694i
\(959\) 42.0833 1.35894
\(960\) 0 0
\(961\) −18.7511 −0.604876
\(962\) 2.79854i 0.0902285i
\(963\) 0 0
\(964\) −35.8606 −1.15499
\(965\) 12.9924 9.17864i 0.418240 0.295471i
\(966\) 0 0
\(967\) 27.3892i 0.880777i 0.897807 + 0.440388i \(0.145159\pi\)
−0.897807 + 0.440388i \(0.854841\pi\)
\(968\) 2.03781i 0.0654978i
\(969\) 0 0
\(970\) −0.710214 1.00531i −0.0228036 0.0322786i
\(971\) −26.7596 −0.858757 −0.429378 0.903125i \(-0.641267\pi\)
−0.429378 + 0.903125i \(0.641267\pi\)
\(972\) 0 0
\(973\) 40.0817i 1.28496i
\(974\) 3.22341 0.103285
\(975\) 0 0
\(976\) −29.6396 −0.948739
\(977\) 2.64662i 0.0846730i −0.999103 0.0423365i \(-0.986520\pi\)
0.999103 0.0423365i \(-0.0134802\pi\)
\(978\) 0 0
\(979\) 49.2496 1.57402
\(980\) −3.09487 4.38079i −0.0988618 0.139939i
\(981\) 0 0
\(982\) 2.84470i 0.0907780i
\(983\) 33.0275i 1.05341i 0.850047 + 0.526707i \(0.176573\pi\)
−0.850047 + 0.526707i \(0.823427\pi\)
\(984\) 0 0
\(985\) −42.3192 + 29.8969i −1.34840 + 0.952594i
\(986\) −0.0886634 −0.00282362
\(987\) 0 0
\(988\) 81.6461i 2.59751i
\(989\) −5.84186 −0.185760
\(990\) 0 0
\(991\) −32.2132 −1.02329 −0.511643 0.859198i \(-0.670963\pi\)
−0.511643 + 0.859198i \(0.670963\pi\)
\(992\) 5.58610i 0.177359i
\(993\) 0 0
\(994\) −0.458557 −0.0145446
\(995\) 31.8851 + 45.1334i 1.01082 + 1.43083i
\(996\) 0 0
\(997\) 52.7919i 1.67194i 0.548777 + 0.835969i \(0.315093\pi\)
−0.548777 + 0.835969i \(0.684907\pi\)
\(998\) 0.539910i 0.0170905i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 765.2.b.c.154.4 8
3.2 odd 2 85.2.b.a.69.5 yes 8
5.2 odd 4 3825.2.a.bj.1.2 4
5.3 odd 4 3825.2.a.bh.1.3 4
5.4 even 2 inner 765.2.b.c.154.5 8
12.11 even 2 1360.2.e.d.1089.3 8
15.2 even 4 425.2.a.g.1.3 4
15.8 even 4 425.2.a.h.1.2 4
15.14 odd 2 85.2.b.a.69.4 8
51.50 odd 2 1445.2.b.e.579.5 8
60.23 odd 4 6800.2.a.bt.1.4 4
60.47 odd 4 6800.2.a.bw.1.1 4
60.59 even 2 1360.2.e.d.1089.6 8
255.152 even 4 7225.2.a.v.1.3 4
255.203 even 4 7225.2.a.w.1.2 4
255.254 odd 2 1445.2.b.e.579.4 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
85.2.b.a.69.4 8 15.14 odd 2
85.2.b.a.69.5 yes 8 3.2 odd 2
425.2.a.g.1.3 4 15.2 even 4
425.2.a.h.1.2 4 15.8 even 4
765.2.b.c.154.4 8 1.1 even 1 trivial
765.2.b.c.154.5 8 5.4 even 2 inner
1360.2.e.d.1089.3 8 12.11 even 2
1360.2.e.d.1089.6 8 60.59 even 2
1445.2.b.e.579.4 8 255.254 odd 2
1445.2.b.e.579.5 8 51.50 odd 2
3825.2.a.bh.1.3 4 5.3 odd 4
3825.2.a.bj.1.2 4 5.2 odd 4
6800.2.a.bt.1.4 4 60.23 odd 4
6800.2.a.bw.1.1 4 60.47 odd 4
7225.2.a.v.1.3 4 255.152 even 4
7225.2.a.w.1.2 4 255.203 even 4