Properties

Label 1445.2.b.e.579.5
Level $1445$
Weight $2$
Character 1445.579
Analytic conductor $11.538$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1445,2,Mod(579,1445)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1445, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1445.579");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1445 = 5 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1445.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.5383830921\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.619810816.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{5} + 14x^{4} - 8x^{3} + 2x^{2} + 2x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 85)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 579.5
Root \(-1.49094 + 1.49094i\) of defining polynomial
Character \(\chi\) \(=\) 1445.579
Dual form 1445.2.b.e.579.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.134632i q^{2} -1.44579i q^{3} +1.98187 q^{4} +(1.29021 + 1.82630i) q^{5} +0.194649 q^{6} -2.86537i q^{7} +0.536087i q^{8} +0.909700 q^{9} +(-0.245878 + 0.173703i) q^{10} +3.84724 q^{11} -2.86537i q^{12} -6.22085i q^{13} +0.385770 q^{14} +(2.64044 - 1.86537i) q^{15} +3.89157 q^{16} +0.122475i q^{18} -6.62231 q^{19} +(2.55703 + 3.61949i) q^{20} -4.14271 q^{21} +0.517961i q^{22} +4.51796i q^{23} +0.775068 q^{24} +(-1.67072 + 4.71261i) q^{25} +0.837525 q^{26} -5.65259i q^{27} -5.67880i q^{28} -0.658562 q^{29} +(0.251138 + 0.355487i) q^{30} -3.49984 q^{31} +1.59610i q^{32} -5.56229i q^{33} +(5.23301 - 3.69693i) q^{35} +1.80291 q^{36} -3.34144i q^{37} -0.891574i q^{38} -8.99403 q^{39} +(-0.979054 + 0.691665i) q^{40} -2.04189 q^{41} -0.557741i q^{42} +1.29303i q^{43} +7.62475 q^{44} +(1.17370 + 1.66138i) q^{45} -0.608262 q^{46} +6.22085i q^{47} -5.62639i q^{48} -1.21033 q^{49} +(-0.634468 - 0.224932i) q^{50} -12.3290i q^{52} +9.92750i q^{53} +0.761019 q^{54} +(4.96375 + 7.02621i) q^{55} +1.53609 q^{56} +9.57445i q^{57} -0.0886634i q^{58} +2.00000 q^{59} +(5.23301 - 3.69693i) q^{60} +7.61634 q^{61} -0.471189i q^{62} -2.60662i q^{63} +7.56826 q^{64} +(11.3611 - 8.02621i) q^{65} +0.748862 q^{66} +0.257106i q^{67} +6.53201 q^{69} +(0.497724 + 0.704530i) q^{70} -1.18868 q^{71} +0.487678i q^{72} +3.26330i q^{73} +0.449864 q^{74} +(6.81343 + 2.41550i) q^{75} -13.1246 q^{76} -11.0238i q^{77} -1.21088i q^{78} -4.99756 q^{79} +(5.02095 + 7.10717i) q^{80} -5.44335 q^{81} -0.274904i q^{82} -7.91534i q^{83} -8.21033 q^{84} -0.174083 q^{86} +0.952140i q^{87} +2.06246i q^{88} -12.8013 q^{89} +(-0.223675 + 0.158018i) q^{90} -17.8250 q^{91} +8.95403i q^{92} +5.06002i q^{93} -0.837525 q^{94} +(-8.54417 - 12.0943i) q^{95} +2.30763 q^{96} +4.08866i q^{97} -0.162950i q^{98} +3.49984 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{4} + 2 q^{5} - 8 q^{9} - 6 q^{10} + 4 q^{11} - 12 q^{14} - 8 q^{16} - 8 q^{19} + 2 q^{20} + 24 q^{21} - 12 q^{24} - 12 q^{25} - 8 q^{29} - 16 q^{30} + 24 q^{31} - 44 q^{39} - 22 q^{40} + 12 q^{41}+ \cdots - 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1445\mathbb{Z}\right)^\times\).

\(n\) \(581\) \(1157\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.134632i 0.0951991i 0.998866 + 0.0475996i \(0.0151571\pi\)
−0.998866 + 0.0475996i \(0.984843\pi\)
\(3\) 1.44579i 0.834726i −0.908740 0.417363i \(-0.862954\pi\)
0.908740 0.417363i \(-0.137046\pi\)
\(4\) 1.98187 0.990937
\(5\) 1.29021 + 1.82630i 0.576999 + 0.816745i
\(6\) 0.194649 0.0794651
\(7\) 2.86537i 1.08301i −0.840698 0.541504i \(-0.817855\pi\)
0.840698 0.541504i \(-0.182145\pi\)
\(8\) 0.536087i 0.189535i
\(9\) 0.909700 0.303233
\(10\) −0.245878 + 0.173703i −0.0777534 + 0.0549298i
\(11\) 3.84724 1.15999 0.579994 0.814621i \(-0.303055\pi\)
0.579994 + 0.814621i \(0.303055\pi\)
\(12\) 2.86537i 0.827161i
\(13\) 6.22085i 1.72535i −0.505755 0.862677i \(-0.668786\pi\)
0.505755 0.862677i \(-0.331214\pi\)
\(14\) 0.385770 0.103101
\(15\) 2.64044 1.86537i 0.681758 0.481636i
\(16\) 3.89157 0.972894
\(17\) 0 0
\(18\) 0.122475i 0.0288675i
\(19\) −6.62231 −1.51926 −0.759631 0.650354i \(-0.774620\pi\)
−0.759631 + 0.650354i \(0.774620\pi\)
\(20\) 2.55703 + 3.61949i 0.571770 + 0.809343i
\(21\) −4.14271 −0.904014
\(22\) 0.517961i 0.110430i
\(23\) 4.51796i 0.942060i 0.882117 + 0.471030i \(0.156118\pi\)
−0.882117 + 0.471030i \(0.843882\pi\)
\(24\) 0.775068 0.158210
\(25\) −1.67072 + 4.71261i −0.334144 + 0.942522i
\(26\) 0.837525 0.164252
\(27\) 5.65259i 1.08784i
\(28\) 5.67880i 1.07319i
\(29\) −0.658562 −0.122292 −0.0611459 0.998129i \(-0.519476\pi\)
−0.0611459 + 0.998129i \(0.519476\pi\)
\(30\) 0.251138 + 0.355487i 0.0458513 + 0.0649027i
\(31\) −3.49984 −0.628589 −0.314295 0.949326i \(-0.601768\pi\)
−0.314295 + 0.949326i \(0.601768\pi\)
\(32\) 1.59610i 0.282154i
\(33\) 5.56229i 0.968271i
\(34\) 0 0
\(35\) 5.23301 3.69693i 0.884541 0.624894i
\(36\) 1.80291 0.300485
\(37\) 3.34144i 0.549329i −0.961540 0.274665i \(-0.911433\pi\)
0.961540 0.274665i \(-0.0885668\pi\)
\(38\) 0.891574i 0.144632i
\(39\) −8.99403 −1.44020
\(40\) −0.979054 + 0.691665i −0.154802 + 0.109362i
\(41\) −2.04189 −0.318890 −0.159445 0.987207i \(-0.550970\pi\)
−0.159445 + 0.987207i \(0.550970\pi\)
\(42\) 0.557741i 0.0860613i
\(43\) 1.29303i 0.197185i 0.995128 + 0.0985926i \(0.0314341\pi\)
−0.995128 + 0.0985926i \(0.968566\pi\)
\(44\) 7.62475 1.14947
\(45\) 1.17370 + 1.66138i 0.174965 + 0.247664i
\(46\) −0.608262 −0.0896833
\(47\) 6.22085i 0.907405i 0.891153 + 0.453702i \(0.149897\pi\)
−0.891153 + 0.453702i \(0.850103\pi\)
\(48\) 5.62639i 0.812099i
\(49\) −1.21033 −0.172905
\(50\) −0.634468 0.224932i −0.0897273 0.0318102i
\(51\) 0 0
\(52\) 12.3290i 1.70972i
\(53\) 9.92750i 1.36365i 0.731517 + 0.681823i \(0.238813\pi\)
−0.731517 + 0.681823i \(0.761187\pi\)
\(54\) 0.761019 0.103562
\(55\) 4.96375 + 7.02621i 0.669312 + 0.947413i
\(56\) 1.53609 0.205268
\(57\) 9.57445i 1.26817i
\(58\) 0.0886634i 0.0116421i
\(59\) 2.00000 0.260378 0.130189 0.991489i \(-0.458442\pi\)
0.130189 + 0.991489i \(0.458442\pi\)
\(60\) 5.23301 3.69693i 0.675579 0.477271i
\(61\) 7.61634 0.975173 0.487586 0.873075i \(-0.337877\pi\)
0.487586 + 0.873075i \(0.337877\pi\)
\(62\) 0.471189i 0.0598411i
\(63\) 2.60662i 0.328404i
\(64\) 7.56826 0.946033
\(65\) 11.3611 8.02621i 1.40917 0.995528i
\(66\) 0.748862 0.0921785
\(67\) 0.257106i 0.0314106i 0.999877 + 0.0157053i \(0.00499935\pi\)
−0.999877 + 0.0157053i \(0.995001\pi\)
\(68\) 0 0
\(69\) 6.53201 0.786362
\(70\) 0.497724 + 0.704530i 0.0594894 + 0.0842075i
\(71\) −1.18868 −0.141070 −0.0705352 0.997509i \(-0.522471\pi\)
−0.0705352 + 0.997509i \(0.522471\pi\)
\(72\) 0.487678i 0.0574735i
\(73\) 3.26330i 0.381940i 0.981596 + 0.190970i \(0.0611633\pi\)
−0.981596 + 0.190970i \(0.938837\pi\)
\(74\) 0.449864 0.0522956
\(75\) 6.81343 + 2.41550i 0.786747 + 0.278918i
\(76\) −13.1246 −1.50549
\(77\) 11.0238i 1.25627i
\(78\) 1.21088i 0.137106i
\(79\) −4.99756 −0.562269 −0.281135 0.959668i \(-0.590711\pi\)
−0.281135 + 0.959668i \(0.590711\pi\)
\(80\) 5.02095 + 7.10717i 0.561359 + 0.794606i
\(81\) −5.44335 −0.604816
\(82\) 0.274904i 0.0303580i
\(83\) 7.91534i 0.868821i −0.900715 0.434411i \(-0.856957\pi\)
0.900715 0.434411i \(-0.143043\pi\)
\(84\) −8.21033 −0.895821
\(85\) 0 0
\(86\) −0.174083 −0.0187719
\(87\) 0.952140i 0.102080i
\(88\) 2.06246i 0.219859i
\(89\) −12.8013 −1.35693 −0.678466 0.734632i \(-0.737355\pi\)
−0.678466 + 0.734632i \(0.737355\pi\)
\(90\) −0.223675 + 0.158018i −0.0235774 + 0.0166565i
\(91\) −17.8250 −1.86857
\(92\) 8.95403i 0.933522i
\(93\) 5.06002i 0.524699i
\(94\) −0.837525 −0.0863841
\(95\) −8.54417 12.0943i −0.876613 1.24085i
\(96\) 2.30763 0.235521
\(97\) 4.08866i 0.415141i 0.978220 + 0.207570i \(0.0665556\pi\)
−0.978220 + 0.207570i \(0.933444\pi\)
\(98\) 0.162950i 0.0164604i
\(99\) 3.49984 0.351747
\(100\) −3.31116 + 9.33980i −0.331116 + 0.933980i
\(101\) 12.2871 1.22261 0.611304 0.791396i \(-0.290645\pi\)
0.611304 + 0.791396i \(0.290645\pi\)
\(102\) 0 0
\(103\) 13.5623i 1.33633i −0.744012 0.668166i \(-0.767079\pi\)
0.744012 0.668166i \(-0.232921\pi\)
\(104\) 3.33492 0.327016
\(105\) −5.34497 7.56582i −0.521615 0.738349i
\(106\) −1.33656 −0.129818
\(107\) 6.63800i 0.641719i 0.947127 + 0.320860i \(0.103972\pi\)
−0.947127 + 0.320860i \(0.896028\pi\)
\(108\) 11.2027i 1.07798i
\(109\) −2.58042 −0.247159 −0.123580 0.992335i \(-0.539437\pi\)
−0.123580 + 0.992335i \(0.539437\pi\)
\(110\) −0.945951 + 0.668279i −0.0901929 + 0.0637179i
\(111\) −4.83101 −0.458539
\(112\) 11.1508i 1.05365i
\(113\) 8.63283i 0.812108i −0.913849 0.406054i \(-0.866904\pi\)
0.913849 0.406054i \(-0.133096\pi\)
\(114\) −1.28903 −0.120728
\(115\) −8.25114 + 5.82912i −0.769423 + 0.543568i
\(116\) −1.30519 −0.121184
\(117\) 5.65911i 0.523185i
\(118\) 0.269264i 0.0247877i
\(119\) 0 0
\(120\) 1.00000 + 1.41550i 0.0912871 + 0.129217i
\(121\) 3.80127 0.345570
\(122\) 1.02540i 0.0928356i
\(123\) 2.95214i 0.266186i
\(124\) −6.93623 −0.622892
\(125\) −10.7622 + 3.02903i −0.962601 + 0.270924i
\(126\) 0.350935 0.0312638
\(127\) 3.24550i 0.287991i 0.989578 + 0.143996i \(0.0459951\pi\)
−0.989578 + 0.143996i \(0.954005\pi\)
\(128\) 4.21114i 0.372216i
\(129\) 1.86945 0.164595
\(130\) 1.08058 + 1.52957i 0.0947734 + 0.134152i
\(131\) 3.44742 0.301203 0.150601 0.988595i \(-0.451879\pi\)
0.150601 + 0.988595i \(0.451879\pi\)
\(132\) 11.0238i 0.959496i
\(133\) 18.9754i 1.64537i
\(134\) −0.0346147 −0.00299026
\(135\) 10.3233 7.29303i 0.888489 0.627684i
\(136\) 0 0
\(137\) 14.6869i 1.25478i 0.778703 + 0.627392i \(0.215878\pi\)
−0.778703 + 0.627392i \(0.784122\pi\)
\(138\) 0.879417i 0.0748609i
\(139\) 13.9883 1.18647 0.593237 0.805028i \(-0.297850\pi\)
0.593237 + 0.805028i \(0.297850\pi\)
\(140\) 10.3712 7.32684i 0.876524 0.619231i
\(141\) 8.99403 0.757434
\(142\) 0.160034i 0.0134298i
\(143\) 23.9331i 2.00139i
\(144\) 3.54016 0.295014
\(145\) −0.849683 1.20273i −0.0705623 0.0998812i
\(146\) −0.439344 −0.0363603
\(147\) 1.74989i 0.144328i
\(148\) 6.62231i 0.544351i
\(149\) 17.8388 1.46141 0.730707 0.682691i \(-0.239191\pi\)
0.730707 + 0.682691i \(0.239191\pi\)
\(150\) −0.325204 + 0.917305i −0.0265528 + 0.0748976i
\(151\) −2.80291 −0.228098 −0.114049 0.993475i \(-0.536382\pi\)
−0.114049 + 0.993475i \(0.536382\pi\)
\(152\) 3.55014i 0.287954i
\(153\) 0 0
\(154\) 1.48415 0.119596
\(155\) −4.51552 6.39174i −0.362695 0.513397i
\(156\) −17.8250 −1.42715
\(157\) 3.60582i 0.287776i 0.989594 + 0.143888i \(0.0459605\pi\)
−0.989594 + 0.143888i \(0.954040\pi\)
\(158\) 0.672831i 0.0535275i
\(159\) 14.3530 1.13827
\(160\) −2.91496 + 2.05931i −0.230448 + 0.162803i
\(161\) 12.9456 1.02026
\(162\) 0.732848i 0.0575780i
\(163\) 13.7256i 1.07507i 0.843242 + 0.537535i \(0.180644\pi\)
−0.843242 + 0.537535i \(0.819356\pi\)
\(164\) −4.04677 −0.316000
\(165\) 10.1584 7.17652i 0.790830 0.558692i
\(166\) 1.06566 0.0827110
\(167\) 6.32684i 0.489586i −0.969575 0.244793i \(-0.921280\pi\)
0.969575 0.244793i \(-0.0787199\pi\)
\(168\) 2.22085i 0.171343i
\(169\) −25.6990 −1.97685
\(170\) 0 0
\(171\) −6.02431 −0.460691
\(172\) 2.56262i 0.195398i
\(173\) 1.76699i 0.134342i −0.997741 0.0671708i \(-0.978603\pi\)
0.997741 0.0671708i \(-0.0213972\pi\)
\(174\) −0.128188 −0.00971794
\(175\) 13.5034 + 4.78723i 1.02076 + 0.361880i
\(176\) 14.9718 1.12854
\(177\) 2.89157i 0.217344i
\(178\) 1.72346i 0.129179i
\(179\) −1.10843 −0.0828476 −0.0414238 0.999142i \(-0.513189\pi\)
−0.0414238 + 0.999142i \(0.513189\pi\)
\(180\) 2.32613 + 3.29265i 0.173380 + 0.245420i
\(181\) 10.8310 0.805062 0.402531 0.915406i \(-0.368130\pi\)
0.402531 + 0.915406i \(0.368130\pi\)
\(182\) 2.39982i 0.177886i
\(183\) 11.0116i 0.814002i
\(184\) −2.42202 −0.178554
\(185\) 6.10246 4.31116i 0.448662 0.316962i
\(186\) −0.681240 −0.0499509
\(187\) 0 0
\(188\) 12.3290i 0.899181i
\(189\) −16.1968 −1.17814
\(190\) 1.62828 1.15032i 0.118128 0.0834528i
\(191\) 3.19221 0.230980 0.115490 0.993309i \(-0.463156\pi\)
0.115490 + 0.993309i \(0.463156\pi\)
\(192\) 10.9421i 0.789678i
\(193\) 7.11407i 0.512082i 0.966666 + 0.256041i \(0.0824182\pi\)
−0.966666 + 0.256041i \(0.917582\pi\)
\(194\) −0.550464 −0.0395210
\(195\) −11.6042 16.4258i −0.830993 1.17627i
\(196\) −2.39873 −0.171338
\(197\) 23.1721i 1.65095i 0.564442 + 0.825473i \(0.309091\pi\)
−0.564442 + 0.825473i \(0.690909\pi\)
\(198\) 0.471189i 0.0334860i
\(199\) −24.7131 −1.75186 −0.875932 0.482434i \(-0.839753\pi\)
−0.875932 + 0.482434i \(0.839753\pi\)
\(200\) −2.52637 0.895651i −0.178641 0.0633321i
\(201\) 0.371721 0.0262192
\(202\) 1.65423i 0.116391i
\(203\) 1.88702i 0.132443i
\(204\) 0 0
\(205\) −2.63447 3.72910i −0.183999 0.260452i
\(206\) 1.82592 0.127218
\(207\) 4.10999i 0.285664i
\(208\) 24.2089i 1.67859i
\(209\) −25.4776 −1.76232
\(210\) 1.01860 0.719603i 0.0702901 0.0496573i
\(211\) 4.27138 0.294054 0.147027 0.989133i \(-0.453030\pi\)
0.147027 + 0.989133i \(0.453030\pi\)
\(212\) 19.6751i 1.35129i
\(213\) 1.71858i 0.117755i
\(214\) −0.893686 −0.0610911
\(215\) −2.36146 + 1.66828i −0.161050 + 0.113776i
\(216\) 3.03028 0.206185
\(217\) 10.0283i 0.680767i
\(218\) 0.347407i 0.0235293i
\(219\) 4.71803 0.318815
\(220\) 9.83753 + 13.9251i 0.663246 + 0.938827i
\(221\) 0 0
\(222\) 0.650408i 0.0436525i
\(223\) 3.65423i 0.244705i −0.992487 0.122353i \(-0.960956\pi\)
0.992487 0.122353i \(-0.0390439\pi\)
\(224\) 4.57343 0.305575
\(225\) −1.51985 + 4.28706i −0.101324 + 0.285804i
\(226\) 1.16225 0.0773120
\(227\) 19.0016i 1.26118i −0.776117 0.630589i \(-0.782813\pi\)
0.776117 0.630589i \(-0.217187\pi\)
\(228\) 18.9754i 1.25667i
\(229\) 20.8851 1.38012 0.690062 0.723751i \(-0.257583\pi\)
0.690062 + 0.723751i \(0.257583\pi\)
\(230\) −0.784785 1.11087i −0.0517472 0.0732483i
\(231\) −15.9380 −1.04864
\(232\) 0.353047i 0.0231786i
\(233\) 0.682876i 0.0447367i −0.999750 0.0223684i \(-0.992879\pi\)
0.999750 0.0223684i \(-0.00712066\pi\)
\(234\) 0.761897 0.0498067
\(235\) −11.3611 + 8.02621i −0.741118 + 0.523572i
\(236\) 3.96375 0.258018
\(237\) 7.22541i 0.469341i
\(238\) 0 0
\(239\) −28.9915 −1.87531 −0.937653 0.347574i \(-0.887006\pi\)
−0.937653 + 0.347574i \(0.887006\pi\)
\(240\) 10.2755 7.25922i 0.663278 0.468581i
\(241\) 18.0943 1.16556 0.582778 0.812631i \(-0.301966\pi\)
0.582778 + 0.812631i \(0.301966\pi\)
\(242\) 0.511773i 0.0328980i
\(243\) 9.08786i 0.582986i
\(244\) 15.0946 0.966335
\(245\) −1.56158 2.21043i −0.0997660 0.141219i
\(246\) −0.397452 −0.0253406
\(247\) 41.1964i 2.62127i
\(248\) 1.87622i 0.119140i
\(249\) −11.4439 −0.725227
\(250\) −0.407803 1.44894i −0.0257918 0.0916387i
\(251\) −7.21325 −0.455296 −0.227648 0.973743i \(-0.573104\pi\)
−0.227648 + 0.973743i \(0.573104\pi\)
\(252\) 5.16600i 0.325428i
\(253\) 17.3817i 1.09278i
\(254\) −0.436948 −0.0274165
\(255\) 0 0
\(256\) 14.5696 0.910598
\(257\) 4.87942i 0.304370i −0.988352 0.152185i \(-0.951369\pi\)
0.988352 0.152185i \(-0.0486309\pi\)
\(258\) 0.251687i 0.0156693i
\(259\) −9.57445 −0.594927
\(260\) 22.5163 15.9069i 1.39640 0.986506i
\(261\) −0.599094 −0.0370830
\(262\) 0.464133i 0.0286742i
\(263\) 30.0234i 1.85132i −0.378351 0.925662i \(-0.623509\pi\)
0.378351 0.925662i \(-0.376491\pi\)
\(264\) 2.98187 0.183522
\(265\) −18.1306 + 12.8086i −1.11375 + 0.786823i
\(266\) −2.55469 −0.156638
\(267\) 18.5079i 1.13267i
\(268\) 0.509553i 0.0311259i
\(269\) −29.6568 −1.80821 −0.904104 0.427312i \(-0.859460\pi\)
−0.904104 + 0.427312i \(0.859460\pi\)
\(270\) 0.981874 + 1.38985i 0.0597550 + 0.0845834i
\(271\) 3.91622 0.237893 0.118947 0.992901i \(-0.462048\pi\)
0.118947 + 0.992901i \(0.462048\pi\)
\(272\) 0 0
\(273\) 25.7712i 1.55974i
\(274\) −1.97732 −0.119454
\(275\) −6.42766 + 18.1306i −0.387603 + 1.09331i
\(276\) 12.9456 0.779235
\(277\) 0.455504i 0.0273686i 0.999906 + 0.0136843i \(0.00435598\pi\)
−0.999906 + 0.0136843i \(0.995644\pi\)
\(278\) 1.88327i 0.112951i
\(279\) −3.18380 −0.190609
\(280\) 1.98187 + 2.80535i 0.118440 + 0.167652i
\(281\) 16.4941 0.983957 0.491978 0.870607i \(-0.336274\pi\)
0.491978 + 0.870607i \(0.336274\pi\)
\(282\) 1.21088i 0.0721071i
\(283\) 8.79775i 0.522972i 0.965207 + 0.261486i \(0.0842125\pi\)
−0.965207 + 0.261486i \(0.915788\pi\)
\(284\) −2.35582 −0.139792
\(285\) −17.4858 + 12.3530i −1.03577 + 0.731731i
\(286\) 3.22216 0.190531
\(287\) 5.85077i 0.345360i
\(288\) 1.45198i 0.0855585i
\(289\) 0 0
\(290\) 0.161926 0.114394i 0.00950860 0.00671747i
\(291\) 5.91134 0.346529
\(292\) 6.46744i 0.378478i
\(293\) 22.5023i 1.31460i 0.753630 + 0.657299i \(0.228301\pi\)
−0.753630 + 0.657299i \(0.771699\pi\)
\(294\) −0.235590 −0.0137399
\(295\) 2.58042 + 3.65259i 0.150238 + 0.212662i
\(296\) 1.79130 0.104117
\(297\) 21.7469i 1.26188i
\(298\) 2.40168i 0.139125i
\(299\) 28.1056 1.62539
\(300\) 13.5034 + 4.78723i 0.779617 + 0.276391i
\(301\) 3.70501 0.213553
\(302\) 0.377361i 0.0217147i
\(303\) 17.7645i 1.02054i
\(304\) −25.7712 −1.47808
\(305\) 9.82668 + 13.9097i 0.562674 + 0.796467i
\(306\) 0 0
\(307\) 11.7034i 0.667947i 0.942583 + 0.333973i \(0.108390\pi\)
−0.942583 + 0.333973i \(0.891610\pi\)
\(308\) 21.8477i 1.24489i
\(309\) −19.6082 −1.11547
\(310\) 0.860532 0.607933i 0.0488749 0.0345283i
\(311\) 21.0605 1.19423 0.597115 0.802155i \(-0.296313\pi\)
0.597115 + 0.802155i \(0.296313\pi\)
\(312\) 4.82159i 0.272969i
\(313\) 22.2911i 1.25997i 0.776609 + 0.629983i \(0.216938\pi\)
−0.776609 + 0.629983i \(0.783062\pi\)
\(314\) −0.485459 −0.0273960
\(315\) 4.76047 3.36309i 0.268222 0.189489i
\(316\) −9.90453 −0.557174
\(317\) 27.8613i 1.56485i 0.622747 + 0.782423i \(0.286016\pi\)
−0.622747 + 0.782423i \(0.713984\pi\)
\(318\) 1.93238i 0.108362i
\(319\) −2.53365 −0.141857
\(320\) 9.76464 + 13.8219i 0.545860 + 0.772667i
\(321\) 9.59713 0.535659
\(322\) 1.74289i 0.0971277i
\(323\) 0 0
\(324\) −10.7880 −0.599335
\(325\) 29.3165 + 10.3933i 1.62618 + 0.576517i
\(326\) −1.84790 −0.102346
\(327\) 3.73074i 0.206310i
\(328\) 1.09463i 0.0604409i
\(329\) 17.8250 0.982726
\(330\) 0.966189 + 1.36764i 0.0531869 + 0.0752863i
\(331\) −13.0067 −0.714914 −0.357457 0.933930i \(-0.616356\pi\)
−0.357457 + 0.933930i \(0.616356\pi\)
\(332\) 15.6872i 0.860947i
\(333\) 3.03971i 0.166575i
\(334\) 0.851794 0.0466081
\(335\) −0.469553 + 0.331721i −0.0256544 + 0.0181239i
\(336\) −16.1217 −0.879509
\(337\) 15.1126i 0.823238i 0.911356 + 0.411619i \(0.135037\pi\)
−0.911356 + 0.411619i \(0.864963\pi\)
\(338\) 3.45991i 0.188194i
\(339\) −12.4812 −0.677888
\(340\) 0 0
\(341\) −13.4647 −0.729155
\(342\) 0.811065i 0.0438574i
\(343\) 16.5895i 0.895750i
\(344\) −0.693177 −0.0373736
\(345\) 8.42766 + 11.9294i 0.453730 + 0.642257i
\(346\) 0.237893 0.0127892
\(347\) 3.58828i 0.192629i 0.995351 + 0.0963144i \(0.0307054\pi\)
−0.995351 + 0.0963144i \(0.969295\pi\)
\(348\) 1.88702i 0.101155i
\(349\) −31.2851 −1.67465 −0.837326 0.546703i \(-0.815883\pi\)
−0.837326 + 0.546703i \(0.815883\pi\)
\(350\) −0.644513 + 1.81798i −0.0344507 + 0.0971753i
\(351\) −35.1640 −1.87691
\(352\) 6.14060i 0.327295i
\(353\) 24.4417i 1.30090i 0.759549 + 0.650450i \(0.225420\pi\)
−0.759549 + 0.650450i \(0.774580\pi\)
\(354\) 0.389298 0.0206910
\(355\) −1.53365 2.17088i −0.0813975 0.115219i
\(356\) −25.3705 −1.34463
\(357\) 0 0
\(358\) 0.149229i 0.00788702i
\(359\) 0.136195 0.00718808 0.00359404 0.999994i \(-0.498856\pi\)
0.00359404 + 0.999994i \(0.498856\pi\)
\(360\) −0.890646 + 0.629207i −0.0469411 + 0.0331621i
\(361\) 24.8550 1.30816
\(362\) 1.45820i 0.0766412i
\(363\) 5.49583i 0.288456i
\(364\) −35.3270 −1.85164
\(365\) −5.95975 + 4.21033i −0.311947 + 0.220379i
\(366\) 1.48251 0.0774922
\(367\) 16.9896i 0.886851i 0.896311 + 0.443426i \(0.146237\pi\)
−0.896311 + 0.443426i \(0.853763\pi\)
\(368\) 17.5820i 0.916524i
\(369\) −1.85751 −0.0966980
\(370\) 0.580419 + 0.821585i 0.0301745 + 0.0427122i
\(371\) 28.4459 1.47684
\(372\) 10.0283i 0.519944i
\(373\) 18.3533i 0.950296i 0.879906 + 0.475148i \(0.157606\pi\)
−0.879906 + 0.475148i \(0.842394\pi\)
\(374\) 0 0
\(375\) 4.37933 + 15.5599i 0.226147 + 0.803507i
\(376\) −3.33492 −0.171985
\(377\) 4.09682i 0.210997i
\(378\) 2.18060i 0.112158i
\(379\) −35.1943 −1.80781 −0.903905 0.427732i \(-0.859313\pi\)
−0.903905 + 0.427732i \(0.859313\pi\)
\(380\) −16.9335 23.9694i −0.868668 1.22960i
\(381\) 4.69230 0.240394
\(382\) 0.429773i 0.0219891i
\(383\) 10.8237i 0.553067i −0.961004 0.276533i \(-0.910814\pi\)
0.961004 0.276533i \(-0.0891856\pi\)
\(384\) 6.08841 0.310698
\(385\) 20.1327 14.2230i 1.02606 0.724870i
\(386\) −0.957780 −0.0487497
\(387\) 1.17627i 0.0597931i
\(388\) 8.10322i 0.411379i
\(389\) −0.174083 −0.00882636 −0.00441318 0.999990i \(-0.501405\pi\)
−0.00441318 + 0.999990i \(0.501405\pi\)
\(390\) 2.21143 1.56229i 0.111980 0.0791098i
\(391\) 0 0
\(392\) 0.648845i 0.0327716i
\(393\) 4.98424i 0.251422i
\(394\) −3.11971 −0.157169
\(395\) −6.44790 9.12703i −0.324429 0.459231i
\(396\) 6.93623 0.348559
\(397\) 2.75287i 0.138162i −0.997611 0.0690812i \(-0.977993\pi\)
0.997611 0.0690812i \(-0.0220067\pi\)
\(398\) 3.32717i 0.166776i
\(399\) 27.4343 1.37343
\(400\) −6.50173 + 18.3395i −0.325086 + 0.916974i
\(401\) −33.9912 −1.69744 −0.848719 0.528843i \(-0.822626\pi\)
−0.848719 + 0.528843i \(0.822626\pi\)
\(402\) 0.0500455i 0.00249604i
\(403\) 21.7720i 1.08454i
\(404\) 24.3514 1.21153
\(405\) −7.02306 9.94117i −0.348979 0.493981i
\(406\) −0.254053 −0.0126085
\(407\) 12.8553i 0.637215i
\(408\) 0 0
\(409\) 4.68288 0.231553 0.115777 0.993275i \(-0.463064\pi\)
0.115777 + 0.993275i \(0.463064\pi\)
\(410\) 0.502056 0.354683i 0.0247948 0.0175166i
\(411\) 21.2341 1.04740
\(412\) 26.8788i 1.32422i
\(413\) 5.73074i 0.281991i
\(414\) −0.553336 −0.0271950
\(415\) 14.4558 10.2124i 0.709605 0.501309i
\(416\) 9.92913 0.486816
\(417\) 20.2241i 0.990380i
\(418\) 3.43010i 0.167772i
\(419\) −29.0991 −1.42158 −0.710792 0.703402i \(-0.751663\pi\)
−0.710792 + 0.703402i \(0.751663\pi\)
\(420\) −10.5931 14.9945i −0.516888 0.731657i
\(421\) 7.19057 0.350447 0.175224 0.984529i \(-0.443935\pi\)
0.175224 + 0.984529i \(0.443935\pi\)
\(422\) 0.575063i 0.0279936i
\(423\) 5.65911i 0.275155i
\(424\) −5.32200 −0.258459
\(425\) 0 0
\(426\) −0.231376 −0.0112102
\(427\) 21.8236i 1.05612i
\(428\) 13.1557i 0.635903i
\(429\) −34.6022 −1.67061
\(430\) −0.224604 0.317927i −0.0108313 0.0153318i
\(431\) −7.63181 −0.367611 −0.183806 0.982963i \(-0.558842\pi\)
−0.183806 + 0.982963i \(0.558842\pi\)
\(432\) 21.9975i 1.05835i
\(433\) 32.2894i 1.55173i 0.630898 + 0.775865i \(0.282686\pi\)
−0.630898 + 0.775865i \(0.717314\pi\)
\(434\) −1.35013 −0.0648084
\(435\) −1.73889 + 1.22846i −0.0833734 + 0.0589002i
\(436\) −5.11407 −0.244919
\(437\) 29.9193i 1.43124i
\(438\) 0.635197i 0.0303509i
\(439\) −13.3974 −0.639422 −0.319711 0.947515i \(-0.603586\pi\)
−0.319711 + 0.947515i \(0.603586\pi\)
\(440\) −3.76666 + 2.66100i −0.179568 + 0.126858i
\(441\) −1.10104 −0.0524305
\(442\) 0 0
\(443\) 6.89070i 0.327387i −0.986511 0.163693i \(-0.947659\pi\)
0.986511 0.163693i \(-0.0523408\pi\)
\(444\) −9.57445 −0.454383
\(445\) −16.5163 23.3789i −0.782949 1.10827i
\(446\) 0.491976 0.0232957
\(447\) 25.7912i 1.21988i
\(448\) 21.6859i 1.02456i
\(449\) 21.1778 0.999440 0.499720 0.866187i \(-0.333436\pi\)
0.499720 + 0.866187i \(0.333436\pi\)
\(450\) −0.577175 0.204621i −0.0272083 0.00964591i
\(451\) −7.85565 −0.369908
\(452\) 17.1092i 0.804748i
\(453\) 4.05241i 0.190399i
\(454\) 2.55822 0.120063
\(455\) −22.9980 32.5538i −1.07816 1.52615i
\(456\) −5.13274 −0.240363
\(457\) 30.2321i 1.41420i −0.707114 0.707100i \(-0.750003\pi\)
0.707114 0.707100i \(-0.249997\pi\)
\(458\) 2.81179i 0.131387i
\(459\) 0 0
\(460\) −16.3527 + 11.5526i −0.762449 + 0.538642i
\(461\) 3.74267 0.174314 0.0871568 0.996195i \(-0.472222\pi\)
0.0871568 + 0.996195i \(0.472222\pi\)
\(462\) 2.14577i 0.0998300i
\(463\) 2.53452i 0.117789i −0.998264 0.0588947i \(-0.981242\pi\)
0.998264 0.0588947i \(-0.0187576\pi\)
\(464\) −2.56284 −0.118977
\(465\) −9.24109 + 6.52848i −0.428545 + 0.302751i
\(466\) 0.0919369 0.00425890
\(467\) 30.1170i 1.39365i −0.717242 0.696824i \(-0.754596\pi\)
0.717242 0.696824i \(-0.245404\pi\)
\(468\) 11.2156i 0.518443i
\(469\) 0.736705 0.0340179
\(470\) −1.08058 1.52957i −0.0498436 0.0705538i
\(471\) 5.21325 0.240214
\(472\) 1.07217i 0.0493508i
\(473\) 4.97460i 0.228732i
\(474\) −0.972770 −0.0446808
\(475\) 11.0640 31.2084i 0.507652 1.43194i
\(476\) 0 0
\(477\) 9.03104i 0.413503i
\(478\) 3.90318i 0.178527i
\(479\) 14.4995 0.662499 0.331250 0.943543i \(-0.392530\pi\)
0.331250 + 0.943543i \(0.392530\pi\)
\(480\) 2.97732 + 4.21441i 0.135896 + 0.192361i
\(481\) −20.7866 −0.947787
\(482\) 2.43607i 0.110960i
\(483\) 18.7166i 0.851635i
\(484\) 7.53365 0.342438
\(485\) −7.46711 + 5.27523i −0.339064 + 0.239536i
\(486\) 1.22352 0.0554998
\(487\) 23.9424i 1.08493i −0.840077 0.542467i \(-0.817490\pi\)
0.840077 0.542467i \(-0.182510\pi\)
\(488\) 4.08302i 0.184830i
\(489\) 19.8443 0.897388
\(490\) 0.297594 0.210239i 0.0134439 0.00949764i
\(491\) −21.1295 −0.953559 −0.476780 0.879023i \(-0.658196\pi\)
−0.476780 + 0.879023i \(0.658196\pi\)
\(492\) 5.85077i 0.263773i
\(493\) 0 0
\(494\) −5.54635 −0.249542
\(495\) 4.51552 + 6.39174i 0.202958 + 0.287287i
\(496\) −13.6199 −0.611550
\(497\) 3.40601i 0.152780i
\(498\) 1.54071i 0.0690410i
\(499\) 4.01027 0.179524 0.0897621 0.995963i \(-0.471389\pi\)
0.0897621 + 0.995963i \(0.471389\pi\)
\(500\) −21.3293 + 6.00315i −0.953877 + 0.268469i
\(501\) −9.14726 −0.408670
\(502\) 0.971133i 0.0433438i
\(503\) 1.44015i 0.0642130i 0.999484 + 0.0321065i \(0.0102216\pi\)
−0.999484 + 0.0321065i \(0.989778\pi\)
\(504\) 1.39738 0.0622442
\(505\) 15.8529 + 22.4398i 0.705444 + 0.998559i
\(506\) −2.34013 −0.104031
\(507\) 37.1553i 1.65013i
\(508\) 6.43217i 0.285381i
\(509\) −31.1478 −1.38060 −0.690301 0.723522i \(-0.742522\pi\)
−0.690301 + 0.723522i \(0.742522\pi\)
\(510\) 0 0
\(511\) 9.35054 0.413644
\(512\) 10.3838i 0.458904i
\(513\) 37.4332i 1.65272i
\(514\) 0.656925 0.0289757
\(515\) 24.7688 17.4982i 1.09144 0.771063i
\(516\) 3.70501 0.163104
\(517\) 23.9331i 1.05258i
\(518\) 1.28903i 0.0566366i
\(519\) −2.55469 −0.112138
\(520\) 4.30275 + 6.09055i 0.188688 + 0.267088i
\(521\) 39.1197 1.71387 0.856933 0.515428i \(-0.172367\pi\)
0.856933 + 0.515428i \(0.172367\pi\)
\(522\) 0.0806571i 0.00353027i
\(523\) 40.4813i 1.77012i 0.465473 + 0.885062i \(0.345884\pi\)
−0.465473 + 0.885062i \(0.654116\pi\)
\(524\) 6.83236 0.298473
\(525\) 6.92131 19.5230i 0.302071 0.852053i
\(526\) 4.04211 0.176244
\(527\) 0 0
\(528\) 21.6461i 0.942025i
\(529\) 2.58802 0.112523
\(530\) −1.72444 2.44095i −0.0749049 0.106028i
\(531\) 1.81940 0.0789552
\(532\) 37.6068i 1.63046i
\(533\) 12.7023i 0.550198i
\(534\) −2.49176 −0.107829
\(535\) −12.1229 + 8.56440i −0.524121 + 0.370272i
\(536\) −0.137831 −0.00595341
\(537\) 1.60255i 0.0691550i
\(538\) 3.99275i 0.172140i
\(539\) −4.65645 −0.200568
\(540\) 20.4595 14.4539i 0.880437 0.621995i
\(541\) 18.5288 0.796614 0.398307 0.917252i \(-0.369598\pi\)
0.398307 + 0.917252i \(0.369598\pi\)
\(542\) 0.527248i 0.0226472i
\(543\) 15.6593i 0.672006i
\(544\) 0 0
\(545\) −3.32928 4.71261i −0.142611 0.201866i
\(546\) −3.46963 −0.148486
\(547\) 43.2959i 1.85120i −0.378504 0.925600i \(-0.623561\pi\)
0.378504 0.925600i \(-0.376439\pi\)
\(548\) 29.1075i 1.24341i
\(549\) 6.92858 0.295705
\(550\) −2.44095 0.865368i −0.104082 0.0368994i
\(551\) 4.36120 0.185793
\(552\) 3.50173i 0.149043i
\(553\) 14.3198i 0.608942i
\(554\) −0.0613254 −0.00260546
\(555\) −6.23301 8.82285i −0.264577 0.374509i
\(556\) 27.7231 1.17572
\(557\) 25.3698i 1.07495i −0.843279 0.537476i \(-0.819378\pi\)
0.843279 0.537476i \(-0.180622\pi\)
\(558\) 0.428641i 0.0181458i
\(559\) 8.04375 0.340214
\(560\) 20.3647 14.3869i 0.860564 0.607956i
\(561\) 0 0
\(562\) 2.22063i 0.0936718i
\(563\) 35.6622i 1.50298i 0.659742 + 0.751492i \(0.270665\pi\)
−0.659742 + 0.751492i \(0.729335\pi\)
\(564\) 17.8250 0.750570
\(565\) 15.7661 11.1382i 0.663285 0.468586i
\(566\) −1.18446 −0.0497864
\(567\) 15.5972i 0.655021i
\(568\) 0.637236i 0.0267378i
\(569\) −27.7944 −1.16520 −0.582602 0.812758i \(-0.697965\pi\)
−0.582602 + 0.812758i \(0.697965\pi\)
\(570\) −1.66311 2.35414i −0.0696602 0.0986043i
\(571\) 15.8578 0.663627 0.331813 0.943345i \(-0.392340\pi\)
0.331813 + 0.943345i \(0.392340\pi\)
\(572\) 47.4325i 1.98325i
\(573\) 4.61525i 0.192805i
\(574\) −0.787700 −0.0328780
\(575\) −21.2914 7.54824i −0.887912 0.314784i
\(576\) 6.88485 0.286869
\(577\) 25.2762i 1.05226i 0.850403 + 0.526131i \(0.176358\pi\)
−0.850403 + 0.526131i \(0.823642\pi\)
\(578\) 0 0
\(579\) 10.2854 0.427448
\(580\) −1.68396 2.38366i −0.0699228 0.0989760i
\(581\) −22.6804 −0.940940
\(582\) 0.795854i 0.0329892i
\(583\) 38.1935i 1.58181i
\(584\) −1.74941 −0.0723911
\(585\) 10.3352 7.30144i 0.427309 0.301877i
\(586\) −3.02952 −0.125148
\(587\) 15.7829i 0.651431i 0.945468 + 0.325716i \(0.105605\pi\)
−0.945468 + 0.325716i \(0.894395\pi\)
\(588\) 3.46805i 0.143020i
\(589\) 23.1770 0.954992
\(590\) −0.491756 + 0.347407i −0.0202453 + 0.0143025i
\(591\) 33.5019 1.37809
\(592\) 13.0035i 0.534439i
\(593\) 19.3560i 0.794855i −0.917634 0.397428i \(-0.869903\pi\)
0.917634 0.397428i \(-0.130097\pi\)
\(594\) 2.92783 0.120130
\(595\) 0 0
\(596\) 35.3543 1.44817
\(597\) 35.7299i 1.46233i
\(598\) 3.78391i 0.154735i
\(599\) 15.8356 0.647023 0.323512 0.946224i \(-0.395136\pi\)
0.323512 + 0.946224i \(0.395136\pi\)
\(600\) −1.29492 + 3.65259i −0.0528649 + 0.149116i
\(601\) −9.30443 −0.379536 −0.189768 0.981829i \(-0.560774\pi\)
−0.189768 + 0.981829i \(0.560774\pi\)
\(602\) 0.498812i 0.0203301i
\(603\) 0.233890i 0.00952473i
\(604\) −5.55502 −0.226030
\(605\) 4.90444 + 6.94225i 0.199394 + 0.282243i
\(606\) 2.39166 0.0971547
\(607\) 26.6661i 1.08234i −0.840912 0.541172i \(-0.817981\pi\)
0.840912 0.541172i \(-0.182019\pi\)
\(608\) 10.5699i 0.428666i
\(609\) 2.72823 0.110554
\(610\) −1.87269 + 1.32298i −0.0758230 + 0.0535661i
\(611\) 38.6990 1.56560
\(612\) 0 0
\(613\) 26.0929i 1.05388i −0.849902 0.526941i \(-0.823339\pi\)
0.849902 0.526941i \(-0.176661\pi\)
\(614\) −1.57565 −0.0635879
\(615\) −5.39148 + 3.80888i −0.217406 + 0.153589i
\(616\) 5.90970 0.238109
\(617\) 23.4622i 0.944554i −0.881450 0.472277i \(-0.843432\pi\)
0.881450 0.472277i \(-0.156568\pi\)
\(618\) 2.63989i 0.106192i
\(619\) 3.50613 0.140923 0.0704617 0.997514i \(-0.477553\pi\)
0.0704617 + 0.997514i \(0.477553\pi\)
\(620\) −8.94920 12.6676i −0.359408 0.508744i
\(621\) 25.5382 1.02481
\(622\) 2.83541i 0.113690i
\(623\) 36.6804i 1.46957i
\(624\) −35.0009 −1.40116
\(625\) −19.4174 15.7469i −0.776696 0.629876i
\(626\) −3.00109 −0.119948
\(627\) 36.8352i 1.47106i
\(628\) 7.14628i 0.285168i
\(629\) 0 0
\(630\) 0.452779 + 0.640911i 0.0180392 + 0.0255345i
\(631\) −7.57823 −0.301685 −0.150842 0.988558i \(-0.548199\pi\)
−0.150842 + 0.988558i \(0.548199\pi\)
\(632\) 2.67913i 0.106570i
\(633\) 6.17550i 0.245454i
\(634\) −3.75102 −0.148972
\(635\) −5.92724 + 4.18737i −0.235215 + 0.166171i
\(636\) 28.4459 1.12795
\(637\) 7.52932i 0.298322i
\(638\) 0.341110i 0.0135047i
\(639\) −1.08134 −0.0427772
\(640\) −7.69079 + 5.43325i −0.304005 + 0.214768i
\(641\) −4.21055 −0.166307 −0.0831535 0.996537i \(-0.526499\pi\)
−0.0831535 + 0.996537i \(0.526499\pi\)
\(642\) 1.29208i 0.0509943i
\(643\) 39.0726i 1.54087i −0.637516 0.770437i \(-0.720038\pi\)
0.637516 0.770437i \(-0.279962\pi\)
\(644\) 25.6566 1.01101
\(645\) 2.41198 + 3.41416i 0.0949715 + 0.134432i
\(646\) 0 0
\(647\) 27.0481i 1.06337i −0.846942 0.531685i \(-0.821559\pi\)
0.846942 0.531685i \(-0.178441\pi\)
\(648\) 2.91811i 0.114634i
\(649\) 7.69448 0.302035
\(650\) −1.39927 + 3.94693i −0.0548839 + 0.154811i
\(651\) 14.4988 0.568253
\(652\) 27.2024i 1.06533i
\(653\) 35.6550i 1.39529i 0.716445 + 0.697643i \(0.245768\pi\)
−0.716445 + 0.697643i \(0.754232\pi\)
\(654\) −0.502276 −0.0196405
\(655\) 4.44790 + 6.29602i 0.173794 + 0.246006i
\(656\) −7.94617 −0.310246
\(657\) 2.96862i 0.115817i
\(658\) 2.39982i 0.0935547i
\(659\) −0.586716 −0.0228552 −0.0114276 0.999935i \(-0.503638\pi\)
−0.0114276 + 0.999935i \(0.503638\pi\)
\(660\) 20.1327 14.2230i 0.783663 0.553628i
\(661\) 18.8785 0.734290 0.367145 0.930164i \(-0.380335\pi\)
0.367145 + 0.930164i \(0.380335\pi\)
\(662\) 1.75112i 0.0680592i
\(663\) 0 0
\(664\) 4.24331 0.164672
\(665\) −34.6546 + 24.4822i −1.34385 + 0.949378i
\(666\) 0.409241 0.0158578
\(667\) 2.97536i 0.115206i
\(668\) 12.5390i 0.485149i
\(669\) −5.28324 −0.204262
\(670\) −0.0446602 0.0632168i −0.00172538 0.00244228i
\(671\) 29.3019 1.13119
\(672\) 6.61220i 0.255071i
\(673\) 44.9680i 1.73339i −0.498841 0.866694i \(-0.666241\pi\)
0.498841 0.866694i \(-0.333759\pi\)
\(674\) −2.03464 −0.0783716
\(675\) 26.6385 + 9.44390i 1.02532 + 0.363496i
\(676\) −50.9323 −1.95893
\(677\) 33.3876i 1.28319i −0.767044 0.641594i \(-0.778273\pi\)
0.767044 0.641594i \(-0.221727\pi\)
\(678\) 1.68037i 0.0645343i
\(679\) 11.7155 0.449601
\(680\) 0 0
\(681\) −27.4722 −1.05274
\(682\) 1.81278i 0.0694149i
\(683\) 22.0237i 0.842713i −0.906895 0.421357i \(-0.861554\pi\)
0.906895 0.421357i \(-0.138446\pi\)
\(684\) −11.9394 −0.456516
\(685\) −26.8226 + 18.9492i −1.02484 + 0.724010i
\(686\) 2.23348 0.0852746
\(687\) 30.1953i 1.15202i
\(688\) 5.03192i 0.191840i
\(689\) 61.7575 2.35277
\(690\) −1.60608 + 1.13463i −0.0611423 + 0.0431947i
\(691\) −4.51396 −0.171719 −0.0858595 0.996307i \(-0.527364\pi\)
−0.0858595 + 0.996307i \(0.527364\pi\)
\(692\) 3.50195i 0.133124i
\(693\) 10.0283i 0.380944i
\(694\) −0.483097 −0.0183381
\(695\) 18.0479 + 25.5468i 0.684594 + 0.969046i
\(696\) −0.510430 −0.0193478
\(697\) 0 0
\(698\) 4.21197i 0.159425i
\(699\) −0.987294 −0.0373429
\(700\) 26.7620 + 9.48768i 1.01151 + 0.358601i
\(701\) −29.3948 −1.11023 −0.555114 0.831774i \(-0.687325\pi\)
−0.555114 + 0.831774i \(0.687325\pi\)
\(702\) 4.73419i 0.178681i
\(703\) 22.1280i 0.834575i
\(704\) 29.1169 1.09739
\(705\) 11.6042 + 16.4258i 0.437039 + 0.618630i
\(706\) −3.29063 −0.123845
\(707\) 35.2070i 1.32409i
\(708\) 5.73074i 0.215374i
\(709\) −1.86205 −0.0699308 −0.0349654 0.999389i \(-0.511132\pi\)
−0.0349654 + 0.999389i \(0.511132\pi\)
\(710\) 0.292270 0.206478i 0.0109687 0.00774897i
\(711\) −4.54628 −0.170499
\(712\) 6.86260i 0.257187i
\(713\) 15.8121i 0.592169i
\(714\) 0 0
\(715\) 43.7090 30.8788i 1.63462 1.15480i
\(716\) −2.19676 −0.0820968
\(717\) 41.9156i 1.56537i
\(718\) 0.0183362i 0.000684299i
\(719\) −15.8028 −0.589346 −0.294673 0.955598i \(-0.595211\pi\)
−0.294673 + 0.955598i \(0.595211\pi\)
\(720\) 4.56755 + 6.46539i 0.170223 + 0.240951i
\(721\) −38.8610 −1.44726
\(722\) 3.34627i 0.124535i
\(723\) 26.1605i 0.972920i
\(724\) 21.4657 0.797766
\(725\) 1.10027 3.10355i 0.0408631 0.115263i
\(726\) 0.739914 0.0274608
\(727\) 21.0930i 0.782296i 0.920328 + 0.391148i \(0.127922\pi\)
−0.920328 + 0.391148i \(0.872078\pi\)
\(728\) 9.55578i 0.354161i
\(729\) −29.4692 −1.09145
\(730\) −0.566845 0.802372i −0.0209799 0.0296971i
\(731\) 0 0
\(732\) 21.8236i 0.806624i
\(733\) 40.8012i 1.50703i −0.657434 0.753513i \(-0.728358\pi\)
0.657434 0.753513i \(-0.271642\pi\)
\(734\) −2.28735 −0.0844275
\(735\) −3.19581 + 2.25772i −0.117879 + 0.0832772i
\(736\) −7.21114 −0.265806
\(737\) 0.989151i 0.0364358i
\(738\) 0.250080i 0.00920557i
\(739\) −13.8161 −0.508234 −0.254117 0.967173i \(-0.581785\pi\)
−0.254117 + 0.967173i \(0.581785\pi\)
\(740\) 12.0943 8.54417i 0.444595 0.314090i
\(741\) 59.5613 2.18804
\(742\) 3.82973i 0.140594i
\(743\) 3.01696i 0.110682i 0.998468 + 0.0553408i \(0.0176245\pi\)
−0.998468 + 0.0553408i \(0.982375\pi\)
\(744\) −2.71261 −0.0994491
\(745\) 23.0158 + 32.5790i 0.843235 + 1.19360i
\(746\) −2.47093 −0.0904674
\(747\) 7.20058i 0.263456i
\(748\) 0 0
\(749\) 19.0203 0.694987
\(750\) −2.09485 + 0.589597i −0.0764932 + 0.0215290i
\(751\) 44.6641 1.62982 0.814909 0.579589i \(-0.196787\pi\)
0.814909 + 0.579589i \(0.196787\pi\)
\(752\) 24.2089i 0.882808i
\(753\) 10.4288i 0.380047i
\(754\) −0.551562 −0.0200867
\(755\) −3.61634 5.11895i −0.131612 0.186298i
\(756\) −32.0999 −1.16746
\(757\) 12.3652i 0.449421i −0.974426 0.224710i \(-0.927856\pi\)
0.974426 0.224710i \(-0.0721436\pi\)
\(758\) 4.73828i 0.172102i
\(759\) 25.1302 0.912169
\(760\) 6.48360 4.58042i 0.235185 0.166149i
\(761\) 16.7175 0.606009 0.303004 0.952989i \(-0.402010\pi\)
0.303004 + 0.952989i \(0.402010\pi\)
\(762\) 0.631733i 0.0228853i
\(763\) 7.39385i 0.267675i
\(764\) 6.32656 0.228887
\(765\) 0 0
\(766\) 1.45722 0.0526515
\(767\) 12.4417i 0.449244i
\(768\) 21.0645i 0.760100i
\(769\) −13.4025 −0.483308 −0.241654 0.970362i \(-0.577690\pi\)
−0.241654 + 0.970362i \(0.577690\pi\)
\(770\) 1.91486 + 2.71050i 0.0690069 + 0.0976796i
\(771\) −7.05460 −0.254065
\(772\) 14.0992i 0.507441i
\(773\) 25.8358i 0.929248i 0.885508 + 0.464624i \(0.153811\pi\)
−0.885508 + 0.464624i \(0.846189\pi\)
\(774\) −0.158363 −0.00569225
\(775\) 5.84724 16.4934i 0.210039 0.592459i
\(776\) −2.19188 −0.0786839
\(777\) 13.8426i 0.496601i
\(778\) 0.0234371i 0.000840261i
\(779\) 13.5220 0.484477
\(780\) −22.9980 32.5538i −0.823462 1.16561i
\(781\) −4.57314 −0.163640
\(782\) 0 0
\(783\) 3.72258i 0.133034i
\(784\) −4.71011 −0.168218
\(785\) −6.58530 + 4.65226i −0.235039 + 0.166046i
\(786\) 0.671038 0.0239351
\(787\) 45.2989i 1.61473i 0.590051 + 0.807366i \(0.299108\pi\)
−0.590051 + 0.807366i \(0.700892\pi\)
\(788\) 45.9242i 1.63598i
\(789\) −43.4075 −1.54535
\(790\) 1.22879 0.868093i 0.0437183 0.0308854i
\(791\) −24.7362 −0.879519
\(792\) 1.87622i 0.0666685i
\(793\) 47.3802i 1.68252i
\(794\) 0.370623 0.0131529
\(795\) 18.5184 + 26.2129i 0.656781 + 0.929677i
\(796\) −48.9782 −1.73599
\(797\) 29.3607i 1.04001i −0.854163 0.520005i \(-0.825930\pi\)
0.854163 0.520005i \(-0.174070\pi\)
\(798\) 3.69353i 0.130750i
\(799\) 0 0
\(800\) −7.52182 2.66664i −0.265936 0.0942800i
\(801\) −11.6453 −0.411467
\(802\) 4.57630i 0.161595i
\(803\) 12.5547i 0.443045i
\(804\) 0.736705 0.0259816
\(805\) 16.7026 + 23.6425i 0.588688 + 0.833290i
\(806\) −2.93120 −0.103247
\(807\) 42.8774i 1.50936i
\(808\) 6.58694i 0.231728i
\(809\) 5.04830 0.177489 0.0887444 0.996054i \(-0.471715\pi\)
0.0887444 + 0.996054i \(0.471715\pi\)
\(810\) 1.33840 0.945527i 0.0470265 0.0332224i
\(811\) −54.3374 −1.90805 −0.954023 0.299734i \(-0.903102\pi\)
−0.954023 + 0.299734i \(0.903102\pi\)
\(812\) 3.73984i 0.131243i
\(813\) 5.66202i 0.198576i
\(814\) 1.73074 0.0606623
\(815\) −25.0670 + 17.7089i −0.878057 + 0.620314i
\(816\) 0 0
\(817\) 8.56284i 0.299576i
\(818\) 0.630464i 0.0220437i
\(819\) −16.2154 −0.566613
\(820\) −5.22118 7.39061i −0.182332 0.258091i
\(821\) −3.05948 −0.106777 −0.0533883 0.998574i \(-0.517002\pi\)
−0.0533883 + 0.998574i \(0.517002\pi\)
\(822\) 2.85879i 0.0997116i
\(823\) 6.87523i 0.239656i −0.992795 0.119828i \(-0.961766\pi\)
0.992795 0.119828i \(-0.0382342\pi\)
\(824\) 7.27057 0.253282
\(825\) 26.2129 + 9.29303i 0.912617 + 0.323542i
\(826\) 0.771540 0.0268453
\(827\) 24.2438i 0.843040i 0.906819 + 0.421520i \(0.138503\pi\)
−0.906819 + 0.421520i \(0.861497\pi\)
\(828\) 8.14548i 0.283075i
\(829\) −15.7734 −0.547832 −0.273916 0.961754i \(-0.588319\pi\)
−0.273916 + 0.961754i \(0.588319\pi\)
\(830\) 1.37492 + 1.94621i 0.0477242 + 0.0675538i
\(831\) 0.658562 0.0228453
\(832\) 47.0811i 1.63224i
\(833\) 0 0
\(834\) 2.72281 0.0942833
\(835\) 11.5547 8.16295i 0.399866 0.282491i
\(836\) −50.4935 −1.74635
\(837\) 19.7831i 0.683806i
\(838\) 3.91767i 0.135334i
\(839\) 9.98832 0.344835 0.172418 0.985024i \(-0.444842\pi\)
0.172418 + 0.985024i \(0.444842\pi\)
\(840\) 4.05594 2.86537i 0.139943 0.0988646i
\(841\) −28.5663 −0.985045
\(842\) 0.968080i 0.0333622i
\(843\) 23.8470i 0.821334i
\(844\) 8.46533 0.291389
\(845\) −33.1571 46.9341i −1.14064 1.61458i
\(846\) −0.761897 −0.0261945
\(847\) 10.8920i 0.374255i
\(848\) 38.6336i 1.32668i
\(849\) 12.7197 0.436538
\(850\) 0 0
\(851\) 15.0965 0.517501
\(852\) 3.40601i 0.116688i
\(853\) 31.1852i 1.06776i −0.845560 0.533880i \(-0.820734\pi\)
0.845560 0.533880i \(-0.179266\pi\)
\(854\) 2.93816 0.100542
\(855\) −7.77263 11.0022i −0.265818 0.376267i
\(856\) −3.55854 −0.121629
\(857\) 26.4712i 0.904240i −0.891957 0.452120i \(-0.850668\pi\)
0.891957 0.452120i \(-0.149332\pi\)
\(858\) 4.65856i 0.159041i
\(859\) −22.7223 −0.775273 −0.387637 0.921812i \(-0.626708\pi\)
−0.387637 + 0.921812i \(0.626708\pi\)
\(860\) −4.68011 + 3.30632i −0.159590 + 0.112745i
\(861\) 8.45897 0.288281
\(862\) 1.02748i 0.0349963i
\(863\) 35.3962i 1.20490i −0.798156 0.602451i \(-0.794191\pi\)
0.798156 0.602451i \(-0.205809\pi\)
\(864\) 9.02213 0.306939
\(865\) 3.22704 2.27978i 0.109723 0.0775150i
\(866\) −4.34719 −0.147723
\(867\) 0 0
\(868\) 19.8749i 0.674597i
\(869\) −19.2268 −0.652225
\(870\) −0.165390 0.234110i −0.00560724 0.00793707i
\(871\) 1.59942 0.0541944
\(872\) 1.38333i 0.0468455i
\(873\) 3.71946i 0.125885i
\(874\) 4.02810 0.136252
\(875\) 8.67927 + 30.8377i 0.293413 + 1.04250i
\(876\) 9.35054 0.315926
\(877\) 1.09791i 0.0370736i −0.999828 0.0185368i \(-0.994099\pi\)
0.999828 0.0185368i \(-0.00590079\pi\)
\(878\) 1.80371i 0.0608724i
\(879\) 32.5335 1.09733
\(880\) 19.3168 + 27.3430i 0.651169 + 0.921732i
\(881\) 16.5399 0.557245 0.278622 0.960401i \(-0.410122\pi\)
0.278622 + 0.960401i \(0.410122\pi\)
\(882\) 0.148235i 0.00499134i
\(883\) 22.1505i 0.745425i −0.927947 0.372712i \(-0.878428\pi\)
0.927947 0.372712i \(-0.121572\pi\)
\(884\) 0 0
\(885\) 5.28087 3.73074i 0.177515 0.125407i
\(886\) 0.927707 0.0311669
\(887\) 19.5836i 0.657553i 0.944408 + 0.328776i \(0.106636\pi\)
−0.944408 + 0.328776i \(0.893364\pi\)
\(888\) 2.58984i 0.0869094i
\(889\) 9.29955 0.311897
\(890\) 3.14755 2.22362i 0.105506 0.0745360i
\(891\) −20.9419 −0.701579
\(892\) 7.24222i 0.242488i
\(893\) 41.1964i 1.37859i
\(894\) 3.47231 0.116131
\(895\) −1.43010 2.02431i −0.0478030 0.0676654i
\(896\) 12.0665 0.403112
\(897\) 40.6347i 1.35675i
\(898\) 2.85120i 0.0951458i
\(899\) 2.30486 0.0768713
\(900\) −3.01216 + 8.49642i −0.100405 + 0.283214i
\(901\) 0 0
\(902\) 1.05762i 0.0352149i
\(903\) 5.35665i 0.178258i
\(904\) 4.62795 0.153923
\(905\) 13.9743 + 19.7806i 0.464520 + 0.657531i
\(906\) −0.545584 −0.0181258
\(907\) 38.3180i 1.27233i −0.771553 0.636165i \(-0.780520\pi\)
0.771553 0.636165i \(-0.219480\pi\)
\(908\) 37.6587i 1.24975i
\(909\) 11.1775 0.370736
\(910\) 4.38278 3.09627i 0.145288 0.102640i
\(911\) 37.8395 1.25368 0.626840 0.779148i \(-0.284348\pi\)
0.626840 + 0.779148i \(0.284348\pi\)
\(912\) 37.2597i 1.23379i
\(913\) 30.4522i 1.00782i
\(914\) 4.07021 0.134631
\(915\) 20.1105 14.2073i 0.664831 0.469678i
\(916\) 41.3916 1.36762
\(917\) 9.87814i 0.326205i
\(918\) 0 0
\(919\) 28.8996 0.953309 0.476655 0.879091i \(-0.341849\pi\)
0.476655 + 0.879091i \(0.341849\pi\)
\(920\) −3.12491 4.42333i −0.103025 0.145833i
\(921\) 16.9206 0.557552
\(922\) 0.503883i 0.0165945i
\(923\) 7.39461i 0.243397i
\(924\) −31.5871 −1.03914
\(925\) 15.7469 + 5.58260i 0.517755 + 0.183555i
\(926\) 0.341228 0.0112134
\(927\) 12.3376i 0.405220i
\(928\) 1.05113i 0.0345051i
\(929\) −47.2978 −1.55179 −0.775895 0.630862i \(-0.782701\pi\)
−0.775895 + 0.630862i \(0.782701\pi\)
\(930\) −0.878942 1.24415i −0.0288216 0.0407971i
\(931\) 8.01521 0.262688
\(932\) 1.35338i 0.0443313i
\(933\) 30.4490i 0.996855i
\(934\) 4.05471 0.132674
\(935\) 0 0
\(936\) 3.03378 0.0991621
\(937\) 1.24572i 0.0406958i −0.999793 0.0203479i \(-0.993523\pi\)
0.999793 0.0203479i \(-0.00647739\pi\)
\(938\) 0.0991839i 0.00323847i
\(939\) 32.2281 1.05173
\(940\) −22.5163 + 15.9069i −0.734402 + 0.518827i
\(941\) −37.9458 −1.23700 −0.618499 0.785785i \(-0.712259\pi\)
−0.618499 + 0.785785i \(0.712259\pi\)
\(942\) 0.701870i 0.0228681i
\(943\) 9.22519i 0.300413i
\(944\) 7.78315 0.253320
\(945\) −20.8972 29.5801i −0.679786 0.962240i
\(946\) −0.669739 −0.0217751
\(947\) 52.2986i 1.69948i 0.527205 + 0.849738i \(0.323240\pi\)
−0.527205 + 0.849738i \(0.676760\pi\)
\(948\) 14.3198i 0.465087i
\(949\) 20.3005 0.658982
\(950\) 4.20164 + 1.48957i 0.136319 + 0.0483280i
\(951\) 40.2815 1.30622
\(952\) 0 0
\(953\) 0.806914i 0.0261385i −0.999915 0.0130693i \(-0.995840\pi\)
0.999915 0.0130693i \(-0.00416019\pi\)
\(954\) −1.21587 −0.0393651
\(955\) 4.11862 + 5.82992i 0.133275 + 0.188652i
\(956\) −57.4575 −1.85831
\(957\) 3.66311i 0.118412i
\(958\) 1.95210i 0.0630694i
\(959\) 42.0833 1.35894
\(960\) 19.9835 14.1176i 0.644965 0.455643i
\(961\) −18.7511 −0.604876
\(962\) 2.79854i 0.0902285i
\(963\) 6.03858i 0.194591i
\(964\) 35.8606 1.15499
\(965\) −12.9924 + 9.17864i −0.418240 + 0.295471i
\(966\) 2.51985 0.0810749
\(967\) 27.3892i 0.880777i 0.897807 + 0.440388i \(0.145159\pi\)
−0.897807 + 0.440388i \(0.854841\pi\)
\(968\) 2.03781i 0.0654978i
\(969\) 0 0
\(970\) −0.710214 1.00531i −0.0228036 0.0322786i
\(971\) 26.7596 0.858757 0.429378 0.903125i \(-0.358733\pi\)
0.429378 + 0.903125i \(0.358733\pi\)
\(972\) 18.0110i 0.577703i
\(973\) 40.0817i 1.28496i
\(974\) 3.22341 0.103285
\(975\) 15.0265 42.3854i 0.481233 1.35742i
\(976\) 29.6396 0.948739
\(977\) 2.64662i 0.0846730i 0.999103 + 0.0423365i \(0.0134802\pi\)
−0.999103 + 0.0423365i \(0.986520\pi\)
\(978\) 2.67167i 0.0854306i
\(979\) −49.2496 −1.57402
\(980\) −3.09487 4.38079i −0.0988618 0.139939i
\(981\) −2.34741 −0.0749469
\(982\) 2.84470i 0.0907780i
\(983\) 33.0275i 1.05341i 0.850047 + 0.526707i \(0.176573\pi\)
−0.850047 + 0.526707i \(0.823427\pi\)
\(984\) −1.58260 −0.0504516
\(985\) −42.3192 + 29.8969i −1.34840 + 0.952594i
\(986\) 0 0
\(987\) 25.7712i 0.820307i
\(988\) 81.6461i 2.59751i
\(989\) −5.84186 −0.185760
\(990\) −0.860532 + 0.607933i −0.0273495 + 0.0193214i
\(991\) 32.2132 1.02329 0.511643 0.859198i \(-0.329037\pi\)
0.511643 + 0.859198i \(0.329037\pi\)
\(992\) 5.58610i 0.177359i
\(993\) 18.8050i 0.596757i
\(994\) −0.458557 −0.0145446
\(995\) −31.8851 45.1334i −1.01082 1.43083i
\(996\) −22.6804 −0.718655
\(997\) 52.7919i 1.67194i −0.548777 0.835969i \(-0.684907\pi\)
0.548777 0.835969i \(-0.315093\pi\)
\(998\) 0.539910i 0.0170905i
\(999\) −18.8878 −0.597583
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1445.2.b.e.579.5 8
5.2 odd 4 7225.2.a.v.1.3 4
5.3 odd 4 7225.2.a.w.1.2 4
5.4 even 2 inner 1445.2.b.e.579.4 8
17.16 even 2 85.2.b.a.69.5 yes 8
51.50 odd 2 765.2.b.c.154.4 8
68.67 odd 2 1360.2.e.d.1089.3 8
85.33 odd 4 425.2.a.h.1.2 4
85.67 odd 4 425.2.a.g.1.3 4
85.84 even 2 85.2.b.a.69.4 8
255.152 even 4 3825.2.a.bj.1.2 4
255.203 even 4 3825.2.a.bh.1.3 4
255.254 odd 2 765.2.b.c.154.5 8
340.67 even 4 6800.2.a.bw.1.1 4
340.203 even 4 6800.2.a.bt.1.4 4
340.339 odd 2 1360.2.e.d.1089.6 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
85.2.b.a.69.4 8 85.84 even 2
85.2.b.a.69.5 yes 8 17.16 even 2
425.2.a.g.1.3 4 85.67 odd 4
425.2.a.h.1.2 4 85.33 odd 4
765.2.b.c.154.4 8 51.50 odd 2
765.2.b.c.154.5 8 255.254 odd 2
1360.2.e.d.1089.3 8 68.67 odd 2
1360.2.e.d.1089.6 8 340.339 odd 2
1445.2.b.e.579.4 8 5.4 even 2 inner
1445.2.b.e.579.5 8 1.1 even 1 trivial
3825.2.a.bh.1.3 4 255.203 even 4
3825.2.a.bj.1.2 4 255.152 even 4
6800.2.a.bt.1.4 4 340.203 even 4
6800.2.a.bw.1.1 4 340.67 even 4
7225.2.a.v.1.3 4 5.2 odd 4
7225.2.a.w.1.2 4 5.3 odd 4