Properties

Label 1445.2.b.e
Level $1445$
Weight $2$
Character orbit 1445.b
Analytic conductor $11.538$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1445,2,Mod(579,1445)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1445, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1445.579");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1445 = 5 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1445.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.5383830921\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.619810816.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{5} + 14x^{4} - 8x^{3} + 2x^{2} + 2x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 85)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{6} q^{2} + (\beta_{6} - \beta_{5} + \cdots - \beta_{2}) q^{3} + (\beta_{7} + \beta_{5} - \beta_{4} - 1) q^{4} + ( - \beta_{5} - \beta_{3} + \beta_1) q^{5} + ( - \beta_{7} + \beta_{5} - \beta_{3} + 1) q^{6}+ \cdots + (3 \beta_{7} + 3 \beta_{5} - 2 \beta_{4} + \cdots - 3) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{4} + 2 q^{5} - 8 q^{9} - 6 q^{10} + 4 q^{11} - 12 q^{14} - 8 q^{16} - 8 q^{19} + 2 q^{20} + 24 q^{21} - 12 q^{24} - 12 q^{25} - 8 q^{29} - 16 q^{30} + 24 q^{31} - 44 q^{39} - 22 q^{40} + 12 q^{41}+ \cdots - 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} - 2x^{5} + 14x^{4} - 8x^{3} + 2x^{2} + 2x + 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( 64\nu^{7} + 16\nu^{6} + 4\nu^{5} - 127\nu^{4} + 944\nu^{3} - 276\nu^{2} + 378\nu + 63 ) / 319 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -63\nu^{7} + 64\nu^{6} + 16\nu^{5} + 130\nu^{4} - 1009\nu^{3} + 1448\nu^{2} - 402\nu - 67 ) / 319 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -67\nu^{7} + 63\nu^{6} - 64\nu^{5} + 118\nu^{4} - 1068\nu^{3} + 1545\nu^{2} - 1263\nu + 268 ) / 319 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 83\nu^{7} - 59\nu^{6} + 65\nu^{5} - 70\nu^{4} + 1304\nu^{3} - 1614\nu^{2} + 1198\nu + 306 ) / 319 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -172\nu^{7} - 43\nu^{6} + 69\nu^{5} + 441\nu^{4} - 2218\nu^{3} + 662\nu^{2} + 619\nu - 269 ) / 319 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( -196\nu^{7} - 49\nu^{6} - 92\nu^{5} + 369\nu^{4} - 2572\nu^{3} + 1244\nu^{2} - 1038\nu - 173 ) / 319 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( \nu^{7} - 2\nu^{4} + 14\nu^{3} - 8\nu^{2} + \nu + 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( -\beta_{7} - \beta_{5} + \beta_{4} + \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{6} - \beta_{5} + \beta_{4} - \beta_{3} + 2\beta_{2} \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 3\beta_{7} + 5\beta_{5} - 5\beta_{4} - 2\beta_{2} + 3\beta _1 + 2 ) / 2 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( -\beta_{7} - \beta_{5} + 5\beta_{4} + 4\beta_{3} - 7 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( 11\beta_{7} + 2\beta_{6} + 9\beta_{5} - 11\beta_{4} - 12\beta_{3} + 12\beta_{2} - 11\beta _1 + 12 ) / 2 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( -15\beta_{6} + 16\beta_{5} - 16\beta_{4} + 16\beta_{3} - 28\beta_{2} + 7\beta_1 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( -43\beta_{7} + 16\beta_{6} - 89\beta_{5} + 105\beta_{4} + 60\beta_{2} - 43\beta _1 - 60 ) / 2 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1445\mathbb{Z}\right)^\times\).

\(n\) \(581\) \(1157\)
\(\chi(n)\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
579.1
1.18254 + 1.18254i
0.561103 0.561103i
−0.252709 0.252709i
−1.49094 1.49094i
−1.49094 + 1.49094i
−0.252709 + 0.252709i
0.561103 + 0.561103i
1.18254 1.18254i
2.31627i 0.203185i −3.36509 1.55654 + 1.60536i −0.470630 0.683735i 3.16190i 2.95872 3.71844 3.60536i
579.2 2.03032i 2.37033i −2.12221 −1.70032 1.45220i 4.81252 5.03032i 0.248119i −2.61845 −2.94844 + 3.45220i
579.3 1.57942i 2.87228i −0.494582 −0.146426 2.23127i −4.53654 1.42058i 2.37769i −5.24997 −3.52412 + 0.231269i
579.4 0.134632i 1.44579i 1.98187 1.29021 1.82630i 0.194649 2.86537i 0.536087i 0.909700 −0.245878 0.173703i
579.5 0.134632i 1.44579i 1.98187 1.29021 + 1.82630i 0.194649 2.86537i 0.536087i 0.909700 −0.245878 + 0.173703i
579.6 1.57942i 2.87228i −0.494582 −0.146426 + 2.23127i −4.53654 1.42058i 2.37769i −5.24997 −3.52412 0.231269i
579.7 2.03032i 2.37033i −2.12221 −1.70032 + 1.45220i 4.81252 5.03032i 0.248119i −2.61845 −2.94844 3.45220i
579.8 2.31627i 0.203185i −3.36509 1.55654 1.60536i −0.470630 0.683735i 3.16190i 2.95872 3.71844 + 3.60536i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 579.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1445.2.b.e 8
5.b even 2 1 inner 1445.2.b.e 8
5.c odd 4 1 7225.2.a.v 4
5.c odd 4 1 7225.2.a.w 4
17.b even 2 1 85.2.b.a 8
51.c odd 2 1 765.2.b.c 8
68.d odd 2 1 1360.2.e.d 8
85.c even 2 1 85.2.b.a 8
85.g odd 4 1 425.2.a.g 4
85.g odd 4 1 425.2.a.h 4
255.h odd 2 1 765.2.b.c 8
255.o even 4 1 3825.2.a.bh 4
255.o even 4 1 3825.2.a.bj 4
340.d odd 2 1 1360.2.e.d 8
340.r even 4 1 6800.2.a.bt 4
340.r even 4 1 6800.2.a.bw 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
85.2.b.a 8 17.b even 2 1
85.2.b.a 8 85.c even 2 1
425.2.a.g 4 85.g odd 4 1
425.2.a.h 4 85.g odd 4 1
765.2.b.c 8 51.c odd 2 1
765.2.b.c 8 255.h odd 2 1
1360.2.e.d 8 68.d odd 2 1
1360.2.e.d 8 340.d odd 2 1
1445.2.b.e 8 1.a even 1 1 trivial
1445.2.b.e 8 5.b even 2 1 inner
3825.2.a.bh 4 255.o even 4 1
3825.2.a.bj 4 255.o even 4 1
6800.2.a.bt 4 340.r even 4 1
6800.2.a.bw 4 340.r even 4 1
7225.2.a.v 4 5.c odd 4 1
7225.2.a.w 4 5.c odd 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1445, [\chi])\):

\( T_{2}^{8} + 12T_{2}^{6} + 46T_{2}^{4} + 56T_{2}^{2} + 1 \) Copy content Toggle raw display
\( T_{11}^{4} - 2T_{11}^{3} - 14T_{11}^{2} + 26T_{11} + 2 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} + 12 T^{6} + \cdots + 1 \) Copy content Toggle raw display
$3$ \( T^{8} + 16 T^{6} + \cdots + 4 \) Copy content Toggle raw display
$5$ \( T^{8} - 2 T^{7} + \cdots + 625 \) Copy content Toggle raw display
$7$ \( T^{8} + 36 T^{6} + \cdots + 196 \) Copy content Toggle raw display
$11$ \( (T^{4} - 2 T^{3} - 14 T^{2} + \cdots + 2)^{2} \) Copy content Toggle raw display
$13$ \( T^{8} + 92 T^{6} + \cdots + 26896 \) Copy content Toggle raw display
$17$ \( T^{8} \) Copy content Toggle raw display
$19$ \( (T^{4} + 4 T^{3} + \cdots + 112)^{2} \) Copy content Toggle raw display
$23$ \( T^{8} + 56 T^{6} + \cdots + 100 \) Copy content Toggle raw display
$29$ \( (T^{4} + 4 T^{3} - 32 T^{2} + \cdots - 80)^{2} \) Copy content Toggle raw display
$31$ \( (T^{4} - 12 T^{3} + \cdots + 74)^{2} \) Copy content Toggle raw display
$37$ \( T^{8} + 112 T^{6} + \cdots + 256 \) Copy content Toggle raw display
$41$ \( (T^{4} - 6 T^{3} + \cdots + 392)^{2} \) Copy content Toggle raw display
$43$ \( T^{8} + 132 T^{6} + \cdots + 99856 \) Copy content Toggle raw display
$47$ \( T^{8} + 92 T^{6} + \cdots + 26896 \) Copy content Toggle raw display
$53$ \( T^{8} + 272 T^{6} + \cdots + 256 \) Copy content Toggle raw display
$59$ \( (T - 2)^{8} \) Copy content Toggle raw display
$61$ \( (T^{4} + 6 T^{3} + \cdots + 1880)^{2} \) Copy content Toggle raw display
$67$ \( T^{8} + 140 T^{6} + \cdots + 2704 \) Copy content Toggle raw display
$71$ \( (T^{4} - 10 T^{3} + \cdots + 242)^{2} \) Copy content Toggle raw display
$73$ \( T^{8} + 356 T^{6} + \cdots + 1577536 \) Copy content Toggle raw display
$79$ \( (T^{4} + 12 T^{3} + \cdots - 526)^{2} \) Copy content Toggle raw display
$83$ \( T^{8} + 284 T^{6} + \cdots + 913936 \) Copy content Toggle raw display
$89$ \( (T^{4} + 24 T^{3} + \cdots - 484)^{2} \) Copy content Toggle raw display
$97$ \( T^{8} + 256 T^{6} + \cdots + 4000000 \) Copy content Toggle raw display
show more
show less