Properties

Label 7225.2.a.v
Level 72257225
Weight 22
Character orbit 7225.a
Self dual yes
Analytic conductor 57.69257.692
Analytic rank 00
Dimension 44
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7225,2,Mod(1,7225)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7225, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7225.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 7225=52172 7225 = 5^{2} \cdot 17^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 7225.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 57.691915460457.6919154604
Analytic rank: 00
Dimension: 44
Coefficient field: 4.4.6224.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x46x22x+5 x^{4} - 6x^{2} - 2x + 5 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 85)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β31)q2+(β1+1)q3+(β2β1+1)q4+(2β3β21)q6+(β3+2)q7+β2q8+(β2β1+1)q9++(3β22β1+3)q99+O(q100) q + (\beta_{3} - 1) q^{2} + ( - \beta_1 + 1) q^{3} + ( - \beta_{2} - \beta_1 + 1) q^{4} + (2 \beta_{3} - \beta_{2} - 1) q^{6} + (\beta_{3} + 2) q^{7} + \beta_{2} q^{8} + (\beta_{2} - \beta_1 + 1) q^{9}+ \cdots + ( - 3 \beta_{2} - 2 \beta_1 + 3) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q2q2+4q3+4q4+10q7+4q9+2q11+10q126q13+6q144q16+4q18+4q19+12q21+12q22+4q23+6q24+10q27+8q28++12q99+O(q100) 4 q - 2 q^{2} + 4 q^{3} + 4 q^{4} + 10 q^{7} + 4 q^{9} + 2 q^{11} + 10 q^{12} - 6 q^{13} + 6 q^{14} - 4 q^{16} + 4 q^{18} + 4 q^{19} + 12 q^{21} + 12 q^{22} + 4 q^{23} + 6 q^{24} + 10 q^{27} + 8 q^{28}+ \cdots + 12 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x46x22x+5 x^{4} - 6x^{2} - 2x + 5 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== ν2ν3 \nu^{2} - \nu - 3 Copy content Toggle raw display
β3\beta_{3}== ν3ν24ν+2 \nu^{3} - \nu^{2} - 4\nu + 2 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β2+β1+3 \beta_{2} + \beta _1 + 3 Copy content Toggle raw display
ν3\nu^{3}== β3+β2+5β1+1 \beta_{3} + \beta_{2} + 5\beta _1 + 1 Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
0.796815
−1.87228
2.44579
−1.37033
−2.31627 0.203185 3.36509 0 −0.470630 0.683735 −3.16190 −2.95872 0
1.2 −1.57942 2.87228 0.494582 0 −4.53654 1.42058 2.37769 5.24997 0
1.3 −0.134632 −1.44579 −1.98187 0 0.194649 2.86537 0.536087 −0.909700 0
1.4 2.03032 2.37033 2.12221 0 4.81252 5.03032 0.248119 2.61845 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
55 1 -1
1717 +1 +1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 7225.2.a.v 4
5.b even 2 1 7225.2.a.w 4
5.c odd 4 2 1445.2.b.e 8
17.b even 2 1 425.2.a.g 4
51.c odd 2 1 3825.2.a.bj 4
68.d odd 2 1 6800.2.a.bw 4
85.c even 2 1 425.2.a.h 4
85.g odd 4 2 85.2.b.a 8
255.h odd 2 1 3825.2.a.bh 4
255.o even 4 2 765.2.b.c 8
340.d odd 2 1 6800.2.a.bt 4
340.r even 4 2 1360.2.e.d 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
85.2.b.a 8 85.g odd 4 2
425.2.a.g 4 17.b even 2 1
425.2.a.h 4 85.c even 2 1
765.2.b.c 8 255.o even 4 2
1360.2.e.d 8 340.r even 4 2
1445.2.b.e 8 5.c odd 4 2
3825.2.a.bh 4 255.h odd 2 1
3825.2.a.bj 4 51.c odd 2 1
6800.2.a.bt 4 340.d odd 2 1
6800.2.a.bw 4 68.d odd 2 1
7225.2.a.v 4 1.a even 1 1 trivial
7225.2.a.w 4 5.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(Γ0(7225))S_{2}^{\mathrm{new}}(\Gamma_0(7225)):

T24+2T234T228T21 T_{2}^{4} + 2T_{2}^{3} - 4T_{2}^{2} - 8T_{2} - 1 Copy content Toggle raw display
T344T33+10T32 T_{3}^{4} - 4T_{3}^{3} + 10T_{3} - 2 Copy content Toggle raw display
T7410T73+32T7238T7+14 T_{7}^{4} - 10T_{7}^{3} + 32T_{7}^{2} - 38T_{7} + 14 Copy content Toggle raw display
T1142T11314T112+26T11+2 T_{11}^{4} - 2T_{11}^{3} - 14T_{11}^{2} + 26T_{11} + 2 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4+2T3+1 T^{4} + 2 T^{3} + \cdots - 1 Copy content Toggle raw display
33 T44T3+2 T^{4} - 4 T^{3} + \cdots - 2 Copy content Toggle raw display
55 T4 T^{4} Copy content Toggle raw display
77 T410T3++14 T^{4} - 10 T^{3} + \cdots + 14 Copy content Toggle raw display
1111 T42T3++2 T^{4} - 2 T^{3} + \cdots + 2 Copy content Toggle raw display
1313 T4+6T3+164 T^{4} + 6 T^{3} + \cdots - 164 Copy content Toggle raw display
1717 T4 T^{4} Copy content Toggle raw display
1919 T44T3++112 T^{4} - 4 T^{3} + \cdots + 112 Copy content Toggle raw display
2323 T44T3+10 T^{4} - 4 T^{3} + \cdots - 10 Copy content Toggle raw display
2929 T44T3+80 T^{4} - 4 T^{3} + \cdots - 80 Copy content Toggle raw display
3131 T412T3++74 T^{4} - 12 T^{3} + \cdots + 74 Copy content Toggle raw display
3737 T412T3+16 T^{4} - 12 T^{3} + \cdots - 16 Copy content Toggle raw display
4141 T46T3++392 T^{4} - 6 T^{3} + \cdots + 392 Copy content Toggle raw display
4343 T4+18T3+316 T^{4} + 18 T^{3} + \cdots - 316 Copy content Toggle raw display
4747 T4+6T3+164 T^{4} + 6 T^{3} + \cdots - 164 Copy content Toggle raw display
5353 T4+8T3++16 T^{4} + 8 T^{3} + \cdots + 16 Copy content Toggle raw display
5959 (T+2)4 (T + 2)^{4} Copy content Toggle raw display
6161 T4+6T3++1880 T^{4} + 6 T^{3} + \cdots + 1880 Copy content Toggle raw display
6767 T4+6T3+52 T^{4} + 6 T^{3} + \cdots - 52 Copy content Toggle raw display
7171 T410T3++242 T^{4} - 10 T^{3} + \cdots + 242 Copy content Toggle raw display
7373 T42T3++1256 T^{4} - 2 T^{3} + \cdots + 1256 Copy content Toggle raw display
7979 T412T3+526 T^{4} - 12 T^{3} + \cdots - 526 Copy content Toggle raw display
8383 T414T3+956 T^{4} - 14 T^{3} + \cdots - 956 Copy content Toggle raw display
8989 T424T3+484 T^{4} - 24 T^{3} + \cdots - 484 Copy content Toggle raw display
9797 T4+4T3++2000 T^{4} + 4 T^{3} + \cdots + 2000 Copy content Toggle raw display
show more
show less