Properties

Label 7225.2.a.v
Level $7225$
Weight $2$
Character orbit 7225.a
Self dual yes
Analytic conductor $57.692$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7225,2,Mod(1,7225)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7225, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7225.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7225 = 5^{2} \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7225.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(57.6919154604\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.6224.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 6x^{2} - 2x + 5 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 85)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{3} - 1) q^{2} + ( - \beta_1 + 1) q^{3} + ( - \beta_{2} - \beta_1 + 1) q^{4} + (2 \beta_{3} - \beta_{2} - 1) q^{6} + (\beta_{3} + 2) q^{7} + \beta_{2} q^{8} + (\beta_{2} - \beta_1 + 1) q^{9}+ \cdots + ( - 3 \beta_{2} - 2 \beta_1 + 3) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{2} + 4 q^{3} + 4 q^{4} + 10 q^{7} + 4 q^{9} + 2 q^{11} + 10 q^{12} - 6 q^{13} + 6 q^{14} - 4 q^{16} + 4 q^{18} + 4 q^{19} + 12 q^{21} + 12 q^{22} + 4 q^{23} + 6 q^{24} + 10 q^{27} + 8 q^{28}+ \cdots + 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 6x^{2} - 2x + 5 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - \nu - 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} - \nu^{2} - 4\nu + 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + \beta _1 + 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} + \beta_{2} + 5\beta _1 + 1 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0.796815
−1.87228
2.44579
−1.37033
−2.31627 0.203185 3.36509 0 −0.470630 0.683735 −3.16190 −2.95872 0
1.2 −1.57942 2.87228 0.494582 0 −4.53654 1.42058 2.37769 5.24997 0
1.3 −0.134632 −1.44579 −1.98187 0 0.194649 2.86537 0.536087 −0.909700 0
1.4 2.03032 2.37033 2.12221 0 4.81252 5.03032 0.248119 2.61845 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(5\) \( -1 \)
\(17\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 7225.2.a.v 4
5.b even 2 1 7225.2.a.w 4
5.c odd 4 2 1445.2.b.e 8
17.b even 2 1 425.2.a.g 4
51.c odd 2 1 3825.2.a.bj 4
68.d odd 2 1 6800.2.a.bw 4
85.c even 2 1 425.2.a.h 4
85.g odd 4 2 85.2.b.a 8
255.h odd 2 1 3825.2.a.bh 4
255.o even 4 2 765.2.b.c 8
340.d odd 2 1 6800.2.a.bt 4
340.r even 4 2 1360.2.e.d 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
85.2.b.a 8 85.g odd 4 2
425.2.a.g 4 17.b even 2 1
425.2.a.h 4 85.c even 2 1
765.2.b.c 8 255.o even 4 2
1360.2.e.d 8 340.r even 4 2
1445.2.b.e 8 5.c odd 4 2
3825.2.a.bh 4 255.h odd 2 1
3825.2.a.bj 4 51.c odd 2 1
6800.2.a.bt 4 340.d odd 2 1
6800.2.a.bw 4 68.d odd 2 1
7225.2.a.v 4 1.a even 1 1 trivial
7225.2.a.w 4 5.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(7225))\):

\( T_{2}^{4} + 2T_{2}^{3} - 4T_{2}^{2} - 8T_{2} - 1 \) Copy content Toggle raw display
\( T_{3}^{4} - 4T_{3}^{3} + 10T_{3} - 2 \) Copy content Toggle raw display
\( T_{7}^{4} - 10T_{7}^{3} + 32T_{7}^{2} - 38T_{7} + 14 \) Copy content Toggle raw display
\( T_{11}^{4} - 2T_{11}^{3} - 14T_{11}^{2} + 26T_{11} + 2 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} + 2 T^{3} + \cdots - 1 \) Copy content Toggle raw display
$3$ \( T^{4} - 4 T^{3} + \cdots - 2 \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( T^{4} - 10 T^{3} + \cdots + 14 \) Copy content Toggle raw display
$11$ \( T^{4} - 2 T^{3} + \cdots + 2 \) Copy content Toggle raw display
$13$ \( T^{4} + 6 T^{3} + \cdots - 164 \) Copy content Toggle raw display
$17$ \( T^{4} \) Copy content Toggle raw display
$19$ \( T^{4} - 4 T^{3} + \cdots + 112 \) Copy content Toggle raw display
$23$ \( T^{4} - 4 T^{3} + \cdots - 10 \) Copy content Toggle raw display
$29$ \( T^{4} - 4 T^{3} + \cdots - 80 \) Copy content Toggle raw display
$31$ \( T^{4} - 12 T^{3} + \cdots + 74 \) Copy content Toggle raw display
$37$ \( T^{4} - 12 T^{3} + \cdots - 16 \) Copy content Toggle raw display
$41$ \( T^{4} - 6 T^{3} + \cdots + 392 \) Copy content Toggle raw display
$43$ \( T^{4} + 18 T^{3} + \cdots - 316 \) Copy content Toggle raw display
$47$ \( T^{4} + 6 T^{3} + \cdots - 164 \) Copy content Toggle raw display
$53$ \( T^{4} + 8 T^{3} + \cdots + 16 \) Copy content Toggle raw display
$59$ \( (T + 2)^{4} \) Copy content Toggle raw display
$61$ \( T^{4} + 6 T^{3} + \cdots + 1880 \) Copy content Toggle raw display
$67$ \( T^{4} + 6 T^{3} + \cdots - 52 \) Copy content Toggle raw display
$71$ \( T^{4} - 10 T^{3} + \cdots + 242 \) Copy content Toggle raw display
$73$ \( T^{4} - 2 T^{3} + \cdots + 1256 \) Copy content Toggle raw display
$79$ \( T^{4} - 12 T^{3} + \cdots - 526 \) Copy content Toggle raw display
$83$ \( T^{4} - 14 T^{3} + \cdots - 956 \) Copy content Toggle raw display
$89$ \( T^{4} - 24 T^{3} + \cdots - 484 \) Copy content Toggle raw display
$97$ \( T^{4} + 4 T^{3} + \cdots + 2000 \) Copy content Toggle raw display
show more
show less