Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [7225,2,Mod(1,7225)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(7225, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("7225.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 7225.a (trivial) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | yes |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | 4.4.6224.1 |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | no (minimal twist has level 85) |
Fricke sign: | |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 |
|
−2.31627 | 0.203185 | 3.36509 | 0 | −0.470630 | 0.683735 | −3.16190 | −2.95872 | 0 | ||||||||||||||||||||||||||||||
1.2 | −1.57942 | 2.87228 | 0.494582 | 0 | −4.53654 | 1.42058 | 2.37769 | 5.24997 | 0 | |||||||||||||||||||||||||||||||
1.3 | −0.134632 | −1.44579 | −1.98187 | 0 | 0.194649 | 2.86537 | 0.536087 | −0.909700 | 0 | |||||||||||||||||||||||||||||||
1.4 | 2.03032 | 2.37033 | 2.12221 | 0 | 4.81252 | 5.03032 | 0.248119 | 2.61845 | 0 | |||||||||||||||||||||||||||||||
Atkin-Lehner signs
Sign | |
---|---|
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 7225.2.a.v | 4 | |
5.b | even | 2 | 1 | 7225.2.a.w | 4 | ||
5.c | odd | 4 | 2 | 1445.2.b.e | 8 | ||
17.b | even | 2 | 1 | 425.2.a.g | 4 | ||
51.c | odd | 2 | 1 | 3825.2.a.bj | 4 | ||
68.d | odd | 2 | 1 | 6800.2.a.bw | 4 | ||
85.c | even | 2 | 1 | 425.2.a.h | 4 | ||
85.g | odd | 4 | 2 | 85.2.b.a | ✓ | 8 | |
255.h | odd | 2 | 1 | 3825.2.a.bh | 4 | ||
255.o | even | 4 | 2 | 765.2.b.c | 8 | ||
340.d | odd | 2 | 1 | 6800.2.a.bt | 4 | ||
340.r | even | 4 | 2 | 1360.2.e.d | 8 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
85.2.b.a | ✓ | 8 | 85.g | odd | 4 | 2 | |
425.2.a.g | 4 | 17.b | even | 2 | 1 | ||
425.2.a.h | 4 | 85.c | even | 2 | 1 | ||
765.2.b.c | 8 | 255.o | even | 4 | 2 | ||
1360.2.e.d | 8 | 340.r | even | 4 | 2 | ||
1445.2.b.e | 8 | 5.c | odd | 4 | 2 | ||
3825.2.a.bh | 4 | 255.h | odd | 2 | 1 | ||
3825.2.a.bj | 4 | 51.c | odd | 2 | 1 | ||
6800.2.a.bt | 4 | 340.d | odd | 2 | 1 | ||
6800.2.a.bw | 4 | 68.d | odd | 2 | 1 | ||
7225.2.a.v | 4 | 1.a | even | 1 | 1 | trivial | |
7225.2.a.w | 4 | 5.b | even | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on :
|
|
|
|