Properties

Label 7225.2
Level 7225
Weight 2
Dimension 1897000
Nonzero newspaces 40
Sturm bound 8323200

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 7225 = 5^{2} \cdot 17^{2} \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 40 \)
Sturm bound: \(8323200\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(7225))\).

Total New Old
Modular forms 2092000 1912109 179891
Cusp forms 2069601 1897000 172601
Eisenstein series 22399 15109 7290

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(7225))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
7225.2.a \(\chi_{7225}(1, \cdot)\) 7225.2.a.a 1 1
7225.2.a.b 1
7225.2.a.c 1
7225.2.a.d 1
7225.2.a.e 1
7225.2.a.f 1
7225.2.a.g 1
7225.2.a.h 1
7225.2.a.i 2
7225.2.a.j 2
7225.2.a.k 2
7225.2.a.l 2
7225.2.a.m 2
7225.2.a.n 2
7225.2.a.o 2
7225.2.a.p 2
7225.2.a.q 3
7225.2.a.r 3
7225.2.a.s 3
7225.2.a.t 3
7225.2.a.u 4
7225.2.a.v 4
7225.2.a.w 4
7225.2.a.x 5
7225.2.a.y 5
7225.2.a.z 6
7225.2.a.ba 6
7225.2.a.bb 6
7225.2.a.bc 6
7225.2.a.bd 6
7225.2.a.be 6
7225.2.a.bf 6
7225.2.a.bg 6
7225.2.a.bh 6
7225.2.a.bi 6
7225.2.a.bj 8
7225.2.a.bk 8
7225.2.a.bl 8
7225.2.a.bm 12
7225.2.a.bn 12
7225.2.a.bo 12
7225.2.a.bp 12
7225.2.a.bq 12
7225.2.a.br 12
7225.2.a.bs 12
7225.2.a.bt 15
7225.2.a.bu 15
7225.2.a.bv 15
7225.2.a.bw 15
7225.2.a.bx 24
7225.2.a.by 24
7225.2.a.bz 24
7225.2.a.ca 24
7225.2.a.cb 24
7225.2.b \(\chi_{7225}(2024, \cdot)\) n/a 392 1
7225.2.c \(\chi_{7225}(7224, \cdot)\) n/a 392 1
7225.2.d \(\chi_{7225}(5201, \cdot)\) n/a 406 1
7225.2.e \(\chi_{7225}(251, \cdot)\) n/a 812 2
7225.2.j \(\chi_{7225}(2274, \cdot)\) n/a 784 2
7225.2.k \(\chi_{7225}(1446, \cdot)\) n/a 2652 4
7225.2.m \(\chi_{7225}(1001, \cdot)\) n/a 1628 4
7225.2.n \(\chi_{7225}(399, \cdot)\) n/a 1560 4
7225.2.p \(\chi_{7225}(866, \cdot)\) n/a 2648 4
7225.2.q \(\chi_{7225}(1444, \cdot)\) n/a 2640 4
7225.2.r \(\chi_{7225}(579, \cdot)\) n/a 2648 4
7225.2.s \(\chi_{7225}(643, \cdot)\) n/a 3128 8
7225.2.v \(\chi_{7225}(618, \cdot)\) n/a 3128 8
7225.2.w \(\chi_{7225}(426, \cdot)\) n/a 7712 16
7225.2.x \(\chi_{7225}(829, \cdot)\) n/a 5280 8
7225.2.bc \(\chi_{7225}(616, \cdot)\) n/a 5296 8
7225.2.bd \(\chi_{7225}(101, \cdot)\) n/a 7712 16
7225.2.be \(\chi_{7225}(424, \cdot)\) n/a 7296 16
7225.2.bf \(\chi_{7225}(324, \cdot)\) n/a 7296 16
7225.2.bh \(\chi_{7225}(134, \cdot)\) n/a 10592 16
7225.2.bi \(\chi_{7225}(1046, \cdot)\) n/a 10560 16
7225.2.bk \(\chi_{7225}(149, \cdot)\) n/a 14592 32
7225.2.bp \(\chi_{7225}(276, \cdot)\) n/a 15424 32
7225.2.bq \(\chi_{7225}(447, \cdot)\) n/a 21152 32
7225.2.bt \(\chi_{7225}(158, \cdot)\) n/a 21152 32
7225.2.bu \(\chi_{7225}(86, \cdot)\) n/a 48768 64
7225.2.bw \(\chi_{7225}(49, \cdot)\) n/a 29312 64
7225.2.bx \(\chi_{7225}(26, \cdot)\) n/a 30784 64
7225.2.bz \(\chi_{7225}(69, \cdot)\) n/a 48896 64
7225.2.ca \(\chi_{7225}(84, \cdot)\) n/a 48896 64
7225.2.cb \(\chi_{7225}(16, \cdot)\) n/a 48768 64
7225.2.cc \(\chi_{7225}(82, \cdot)\) n/a 58496 128
7225.2.cf \(\chi_{7225}(7, \cdot)\) n/a 58496 128
7225.2.cg \(\chi_{7225}(21, \cdot)\) n/a 97536 128
7225.2.cl \(\chi_{7225}(4, \cdot)\) n/a 97792 128
7225.2.cn \(\chi_{7225}(36, \cdot)\) n/a 195584 256
7225.2.co \(\chi_{7225}(9, \cdot)\) n/a 195072 256
7225.2.cq \(\chi_{7225}(3, \cdot)\) n/a 390656 512
7225.2.ct \(\chi_{7225}(12, \cdot)\) n/a 390656 512

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(7225))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(7225)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(17))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(25))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(85))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(289))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(425))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(1445))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(7225))\)\(^{\oplus 1}\)