L(s) = 1 | + (−0.485 + 2.75i)5-s + (1.68 + 2.91i)7-s + (−0.258 + 0.447i)11-s + (−4.37 − 1.59i)13-s + (0.735 + 0.617i)17-s + (−3.12 + 3.04i)19-s + (−0.629 − 3.57i)23-s + (−2.63 − 0.958i)25-s + (−6.21 + 5.21i)29-s + (−2.38 − 4.13i)31-s + (−8.83 + 3.21i)35-s + 9.13·37-s + (6.54 − 2.38i)41-s + (−0.817 + 4.63i)43-s + (−10.4 + 8.74i)47-s + ⋯ |
L(s) = 1 | + (−0.216 + 1.23i)5-s + (0.636 + 1.10i)7-s + (−0.0778 + 0.134i)11-s + (−1.21 − 0.441i)13-s + (0.178 + 0.149i)17-s + (−0.715 + 0.698i)19-s + (−0.131 − 0.744i)23-s + (−0.526 − 0.191i)25-s + (−1.15 + 0.968i)29-s + (−0.429 − 0.743i)31-s + (−1.49 + 0.543i)35-s + 1.50·37-s + (1.02 − 0.372i)41-s + (−0.124 + 0.706i)43-s + (−1.51 + 1.27i)47-s + ⋯ |
Λ(s)=(=(684s/2ΓC(s)L(s)(−0.575−0.817i)Λ(2−s)
Λ(s)=(=(684s/2ΓC(s+1/2)L(s)(−0.575−0.817i)Λ(1−s)
Degree: |
2 |
Conductor: |
684
= 22⋅32⋅19
|
Sign: |
−0.575−0.817i
|
Analytic conductor: |
5.46176 |
Root analytic conductor: |
2.33704 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ684(73,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 684, ( :1/2), −0.575−0.817i)
|
Particular Values
L(1) |
≈ |
0.530484+1.02249i |
L(21) |
≈ |
0.530484+1.02249i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 19 | 1+(3.12−3.04i)T |
good | 5 | 1+(0.485−2.75i)T+(−4.69−1.71i)T2 |
| 7 | 1+(−1.68−2.91i)T+(−3.5+6.06i)T2 |
| 11 | 1+(0.258−0.447i)T+(−5.5−9.52i)T2 |
| 13 | 1+(4.37+1.59i)T+(9.95+8.35i)T2 |
| 17 | 1+(−0.735−0.617i)T+(2.95+16.7i)T2 |
| 23 | 1+(0.629+3.57i)T+(−21.6+7.86i)T2 |
| 29 | 1+(6.21−5.21i)T+(5.03−28.5i)T2 |
| 31 | 1+(2.38+4.13i)T+(−15.5+26.8i)T2 |
| 37 | 1−9.13T+37T2 |
| 41 | 1+(−6.54+2.38i)T+(31.4−26.3i)T2 |
| 43 | 1+(0.817−4.63i)T+(−40.4−14.7i)T2 |
| 47 | 1+(10.4−8.74i)T+(8.16−46.2i)T2 |
| 53 | 1+(−1.20−6.81i)T+(−49.8+18.1i)T2 |
| 59 | 1+(−10.9−9.19i)T+(10.2+58.1i)T2 |
| 61 | 1+(−1.05−6.00i)T+(−57.3+20.8i)T2 |
| 67 | 1+(−3.38+2.84i)T+(11.6−65.9i)T2 |
| 71 | 1+(−1.66+9.42i)T+(−66.7−24.2i)T2 |
| 73 | 1+(−5.65+2.05i)T+(55.9−46.9i)T2 |
| 79 | 1+(9.85−3.58i)T+(60.5−50.7i)T2 |
| 83 | 1+(2.39+4.14i)T+(−41.5+71.8i)T2 |
| 89 | 1+(−8.30−3.02i)T+(68.1+57.2i)T2 |
| 97 | 1+(−8.46−7.10i)T+(16.8+95.5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.85423641613247017534713117393, −10.00498439199056605839717631184, −9.103375513901357614364252762752, −7.992418922331131979312841369803, −7.42359831665845473045992885509, −6.29590065389037938142067511809, −5.48017719731709420764591624585, −4.31892153844660135924713506355, −2.93501310056892336600863798177, −2.15015519457790365016376344980,
0.59366379455735406325635346373, 2.03760663253561296552494120745, 3.85819895284241338656695765235, 4.66150209408773096195092201645, 5.34756455719911461518697971375, 6.83190163989672656962340099438, 7.65757062684222607501100996447, 8.362898220685349861918309222220, 9.373023991550634610995992379310, 10.03251183531345553209498852576