gp: [N,k,chi] = [684,2,Mod(73,684)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(684, base_ring=CyclotomicField(18))
chi = DirichletCharacter(H, H._module([0, 0, 4]))
N = Newforms(chi, 2, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("684.73");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: traces = [12,0,0,0,0,0,3]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a basis 1 , β 1 , … , β 11 1,\beta_1,\ldots,\beta_{11} 1 , β 1 , … , β 1 1 for the coefficient ring described below.
We also show the integral q q q -expansion of the trace form .
Basis of coefficient ring in terms of a root ν \nu ν of
x 12 − 6 x 11 − 3 x 10 + 70 x 9 − 15 x 8 − 426 x 7 + 64 x 6 + 1659 x 5 + 267 x 4 + ⋯ + 4161 x^{12} - 6 x^{11} - 3 x^{10} + 70 x^{9} - 15 x^{8} - 426 x^{7} + 64 x^{6} + 1659 x^{5} + 267 x^{4} + \cdots + 4161 x 1 2 − 6 x 1 1 − 3 x 1 0 + 7 0 x 9 − 1 5 x 8 − 4 2 6 x 7 + 6 4 x 6 + 1 6 5 9 x 5 + 2 6 7 x 4 + ⋯ + 4 1 6 1
x^12 - 6*x^11 - 3*x^10 + 70*x^9 - 15*x^8 - 426*x^7 + 64*x^6 + 1659*x^5 + 267*x^4 - 3969*x^3 - 2088*x^2 + 4446*x + 4161
:
β 1 \beta_{1} β 1 = = =
ν \nu ν
v
β 2 \beta_{2} β 2 = = =
( − 1861 ν 11 + 59764 ν 10 − 261706 ν 9 − 459237 ν 8 + 3512934 ν 7 + ⋯ − 104999089 ) / 8740601 ( - 1861 \nu^{11} + 59764 \nu^{10} - 261706 \nu^{9} - 459237 \nu^{8} + 3512934 \nu^{7} + \cdots - 104999089 ) / 8740601 ( − 1 8 6 1 ν 1 1 + 5 9 7 6 4 ν 1 0 − 2 6 1 7 0 6 ν 9 − 4 5 9 2 3 7 ν 8 + 3 5 1 2 9 3 4 ν 7 + ⋯ − 1 0 4 9 9 9 0 8 9 ) / 8 7 4 0 6 0 1
(-1861*v^11 + 59764*v^10 - 261706*v^9 - 459237*v^8 + 3512934*v^7 + 1223776*v^6 - 19762014*v^5 - 6600456*v^4 + 62490886*v^3 + 42461956*v^2 - 98039407*v - 104999089) / 8740601
β 3 \beta_{3} β 3 = = =
( − 3014 ν 11 − 25876 ν 10 + 250822 ν 9 + 84243 ν 8 − 2839567 ν 7 + ⋯ + 91337490 ) / 8740601 ( - 3014 \nu^{11} - 25876 \nu^{10} + 250822 \nu^{9} + 84243 \nu^{8} - 2839567 \nu^{7} + \cdots + 91337490 ) / 8740601 ( − 3 0 1 4 ν 1 1 − 2 5 8 7 6 ν 1 0 + 2 5 0 8 2 2 ν 9 + 8 4 2 4 3 ν 8 − 2 8 3 9 5 6 7 ν 7 + ⋯ + 9 1 3 3 7 4 9 0 ) / 8 7 4 0 6 0 1
(-3014*v^11 - 25876*v^10 + 250822*v^9 + 84243*v^8 - 2839567*v^7 - 652331*v^6 + 18054126*v^5 + 5399484*v^4 - 59109957*v^3 - 38613723*v^2 + 94201422*v + 91337490) / 8740601
β 4 \beta_{4} β 4 = = =
( − 7410 ν 11 + 92642 ν 10 − 242771 ν 9 − 590557 ν 8 + 2422014 ν 7 + ⋯ − 39192874 ) / 8740601 ( - 7410 \nu^{11} + 92642 \nu^{10} - 242771 \nu^{9} - 590557 \nu^{8} + 2422014 \nu^{7} + \cdots - 39192874 ) / 8740601 ( − 7 4 1 0 ν 1 1 + 9 2 6 4 2 ν 1 0 − 2 4 2 7 7 1 ν 9 − 5 9 0 5 5 7 ν 8 + 2 4 2 2 0 1 4 ν 7 + ⋯ − 3 9 1 9 2 8 7 4 ) / 8 7 4 0 6 0 1
(-7410*v^11 + 92642*v^10 - 242771*v^9 - 590557*v^8 + 2422014*v^7 + 2513886*v^6 - 10863570*v^5 - 10833438*v^4 + 27062496*v^3 + 32215080*v^2 - 29279114*v - 39192874) / 8740601
β 5 \beta_{5} β 5 = = =
( 7410 ν 11 + 11132 ν 10 − 276099 ν 9 + 170744 ν 8 + 2370458 ν 7 + ⋯ − 26703616 ) / 8740601 ( 7410 \nu^{11} + 11132 \nu^{10} - 276099 \nu^{9} + 170744 \nu^{8} + 2370458 \nu^{7} + \cdots - 26703616 ) / 8740601 ( 7 4 1 0 ν 1 1 + 1 1 1 3 2 ν 1 0 − 2 7 6 0 9 9 ν 9 + 1 7 0 7 4 4 ν 8 + 2 3 7 0 4 5 8 ν 7 + ⋯ − 2 6 7 0 3 6 1 6 ) / 8 7 4 0 6 0 1
(7410*v^11 + 11132*v^10 - 276099*v^9 + 170744*v^8 + 2370458*v^7 - 1428976*v^6 - 11344066*v^5 + 2408876*v^4 + 33428312*v^3 + 6822812*v^2 - 44659861*v - 26703616) / 8740601
β 6 \beta_{6} β 6 = = =
( 8405 ν 11 + 8018 ν 10 − 346679 ν 9 + 455105 ν 8 + 2627431 ν 7 + ⋯ − 11328251 ) / 8740601 ( 8405 \nu^{11} + 8018 \nu^{10} - 346679 \nu^{9} + 455105 \nu^{8} + 2627431 \nu^{7} + \cdots - 11328251 ) / 8740601 ( 8 4 0 5 ν 1 1 + 8 0 1 8 ν 1 0 − 3 4 6 6 7 9 ν 9 + 4 5 5 1 0 5 ν 8 + 2 6 2 7 4 3 1 ν 7 + ⋯ − 1 1 3 2 8 2 5 1 ) / 8 7 4 0 6 0 1
(8405*v^11 + 8018*v^10 - 346679*v^9 + 455105*v^8 + 2627431*v^7 - 3363517*v^6 - 11636805*v^5 + 9113704*v^4 + 31536935*v^3 - 4569699*v^2 - 40761460*v - 11328251) / 8740601
β 7 \beta_{7} β 7 = = =
( 15815 ν 11 − 89341 ν 10 − 80323 ν 9 + 1088115 ν 8 − 105905 ν 7 + ⋯ + 1553197 ) / 8740601 ( 15815 \nu^{11} - 89341 \nu^{10} - 80323 \nu^{9} + 1088115 \nu^{8} - 105905 \nu^{7} + \cdots + 1553197 ) / 8740601 ( 1 5 8 1 5 ν 1 1 − 8 9 3 4 1 ν 1 0 − 8 0 3 2 3 ν 9 + 1 0 8 8 1 1 5 ν 8 − 1 0 5 9 0 5 ν 7 + ⋯ + 1 5 5 3 1 9 7 ) / 8 7 4 0 6 0 1
(15815*v^11 - 89341*v^10 - 80323*v^9 + 1088115*v^8 - 105905*v^7 - 5646270*v^6 - 277950*v^5 + 17338641*v^4 + 8455587*v^3 - 27341345*v^2 - 22774844*v + 1553197) / 8740601
β 8 \beta_{8} β 8 = = =
( 16036 ν 11 − 88198 ν 10 + 124775 ν 9 + 357074 ν 8 − 2014841 ν 7 + ⋯ + 33629265 ) / 8740601 ( 16036 \nu^{11} - 88198 \nu^{10} + 124775 \nu^{9} + 357074 \nu^{8} - 2014841 \nu^{7} + \cdots + 33629265 ) / 8740601 ( 1 6 0 3 6 ν 1 1 − 8 8 1 9 8 ν 1 0 + 1 2 4 7 7 5 ν 9 + 3 5 7 0 7 4 ν 8 − 2 0 1 4 8 4 1 ν 7 + ⋯ + 3 3 6 2 9 2 6 5 ) / 8 7 4 0 6 0 1
(16036*v^11 - 88198*v^10 + 124775*v^9 + 357074*v^8 - 2014841*v^7 + 1083449*v^6 + 10730801*v^5 - 7009805*v^4 - 37334292*v^3 + 5511793*v^2 + 68308502*v + 33629265) / 8740601
β 9 \beta_{9} β 9 = = =
( − 1506 ν 11 + 8283 ν 10 + 6301 ν 9 − 90477 ν 8 − 1422 ν 7 + 485184 ν 6 + ⋯ − 745423 ) / 514153 ( - 1506 \nu^{11} + 8283 \nu^{10} + 6301 \nu^{9} - 90477 \nu^{8} - 1422 \nu^{7} + 485184 \nu^{6} + \cdots - 745423 ) / 514153 ( − 1 5 0 6 ν 1 1 + 8 2 8 3 ν 1 0 + 6 3 0 1 ν 9 − 9 0 4 7 7 ν 8 − 1 4 2 2 ν 7 + 4 8 5 1 8 4 ν 6 + ⋯ − 7 4 5 4 2 3 ) / 5 1 4 1 5 3
(-1506*v^11 + 8283*v^10 + 6301*v^9 - 90477*v^8 - 1422*v^7 + 485184*v^6 + 4698*v^5 - 1477233*v^4 - 388357*v^3 + 2375103*v^2 + 1084425*v - 745423) / 514153
β 10 \beta_{10} β 1 0 = = =
( 32367 ν 11 − 175660 ν 10 + 8466 ν 9 + 1222749 ν 8 − 536869 ν 7 + ⋯ + 20539212 ) / 8740601 ( 32367 \nu^{11} - 175660 \nu^{10} + 8466 \nu^{9} + 1222749 \nu^{8} - 536869 \nu^{7} + \cdots + 20539212 ) / 8740601 ( 3 2 3 6 7 ν 1 1 − 1 7 5 6 6 0 ν 1 0 + 8 4 6 6 ν 9 + 1 2 2 2 7 4 9 ν 8 − 5 3 6 8 6 9 ν 7 + ⋯ + 2 0 5 3 9 2 1 2 ) / 8 7 4 0 6 0 1
(32367*v^11 - 175660*v^10 + 8466*v^9 + 1222749*v^8 - 536869*v^7 - 4743060*v^6 + 1737702*v^5 + 11702325*v^4 - 5650797*v^3 - 17409849*v^2 + 16526830*v + 20539212) / 8740601
β 11 \beta_{11} β 1 1 = = =
( 382 ν 11 − 2101 ν 10 + 162 ν 9 + 12670 ν 8 + 605 ν 7 − 42146 ν 6 + ⋯ − 476163 ) / 80189 ( 382 \nu^{11} - 2101 \nu^{10} + 162 \nu^{9} + 12670 \nu^{8} + 605 \nu^{7} - 42146 \nu^{6} + \cdots - 476163 ) / 80189 ( 3 8 2 ν 1 1 − 2 1 0 1 ν 1 0 + 1 6 2 ν 9 + 1 2 6 7 0 ν 8 + 6 0 5 ν 7 − 4 2 1 4 6 ν 6 + ⋯ − 4 7 6 1 6 3 ) / 8 0 1 8 9
(382*v^11 - 2101*v^10 + 162*v^9 + 12670*v^8 + 605*v^7 - 42146*v^6 - 39078*v^5 + 48159*v^4 + 203904*v^3 + 142404*v^2 - 273582*v - 476163) / 80189
ν \nu ν = = =
β 1 \beta_1 β 1
b1
ν 2 \nu^{2} ν 2 = = =
− β 10 − β 9 + β 8 − β 7 + β 6 − β 5 − β 4 + β 2 + β 1 + 3 -\beta_{10} - \beta_{9} + \beta_{8} - \beta_{7} + \beta_{6} - \beta_{5} - \beta_{4} + \beta_{2} + \beta _1 + 3 − β 1 0 − β 9 + β 8 − β 7 + β 6 − β 5 − β 4 + β 2 + β 1 + 3
-b10 - b9 + b8 - b7 + b6 - b5 - b4 + b2 + b1 + 3
ν 3 \nu^{3} ν 3 = = =
β 11 − 3 β 10 − β 9 + β 8 − 2 β 7 + β 6 + 2 β 5 − 3 β 4 + 3 β 1 + 2 \beta_{11} - 3\beta_{10} - \beta_{9} + \beta_{8} - 2\beta_{7} + \beta_{6} + 2\beta_{5} - 3\beta_{4} + 3\beta _1 + 2 β 1 1 − 3 β 1 0 − β 9 + β 8 − 2 β 7 + β 6 + 2 β 5 − 3 β 4 + 3 β 1 + 2
b11 - 3*b10 - b9 + b8 - 2*b7 + b6 + 2*b5 - 3*b4 + 3*b1 + 2
ν 4 \nu^{4} ν 4 = = =
β 11 − 9 β 10 − 7 β 9 + 6 β 8 − 12 β 7 + 8 β 6 − 13 β 4 + ⋯ + 5 \beta_{11} - 9 \beta_{10} - 7 \beta_{9} + 6 \beta_{8} - 12 \beta_{7} + 8 \beta_{6} - 13 \beta_{4} + \cdots + 5 β 1 1 − 9 β 1 0 − 7 β 9 + 6 β 8 − 1 2 β 7 + 8 β 6 − 1 3 β 4 + ⋯ + 5
b11 - 9*b10 - 7*b9 + 6*b8 - 12*b7 + 8*b6 - 13*b4 - 2*b3 + 3*b2 + 6*b1 + 5
ν 5 \nu^{5} ν 5 = = =
8 β 11 − 28 β 10 − 22 β 9 + 10 β 8 − 34 β 7 + 11 β 6 + 12 β 5 + ⋯ + 4 8 \beta_{11} - 28 \beta_{10} - 22 \beta_{9} + 10 \beta_{8} - 34 \beta_{7} + 11 \beta_{6} + 12 \beta_{5} + \cdots + 4 8 β 1 1 − 2 8 β 1 0 − 2 2 β 9 + 1 0 β 8 − 3 4 β 7 + 1 1 β 6 + 1 2 β 5 + ⋯ + 4
8*b11 - 28*b10 - 22*b9 + 10*b8 - 34*b7 + 11*b6 + 12*b5 - 25*b4 - 5*b3 - 3*b2 + 9*b1 + 4
ν 6 \nu^{6} ν 6 = = =
11 β 11 − 62 β 10 − 71 β 9 + 26 β 8 − 108 β 7 + 26 β 6 + 25 β 5 + ⋯ − 6 11 \beta_{11} - 62 \beta_{10} - 71 \beta_{9} + 26 \beta_{8} - 108 \beta_{7} + 26 \beta_{6} + 25 \beta_{5} + \cdots - 6 1 1 β 1 1 − 6 2 β 1 0 − 7 1 β 9 + 2 6 β 8 − 1 0 8 β 7 + 2 6 β 6 + 2 5 β 5 + ⋯ − 6
11*b11 - 62*b10 - 71*b9 + 26*b8 - 108*b7 + 26*b6 + 25*b5 - 66*b4 - 33*b3 - 16*b2 + 24*b1 - 6
ν 7 \nu^{7} ν 7 = = =
26 β 11 − 152 β 10 − 261 β 9 + 42 β 8 − 327 β 7 − 12 β 6 + 87 β 5 + ⋯ − 5 26 \beta_{11} - 152 \beta_{10} - 261 \beta_{9} + 42 \beta_{8} - 327 \beta_{7} - 12 \beta_{6} + 87 \beta_{5} + \cdots - 5 2 6 β 1 1 − 1 5 2 β 1 0 − 2 6 1 β 9 + 4 2 β 8 − 3 2 7 β 7 − 1 2 β 6 + 8 7 β 5 + ⋯ − 5
26*b11 - 152*b10 - 261*b9 + 42*b8 - 327*b7 - 12*b6 + 87*b5 - 91*b4 - 98*b3 - 75*b2 + 45*b1 - 5
ν 8 \nu^{8} ν 8 = = =
− 12 β 11 − 288 β 10 − 804 β 9 + 76 β 8 − 866 β 7 − 236 β 6 + ⋯ + 18 - 12 \beta_{11} - 288 \beta_{10} - 804 \beta_{9} + 76 \beta_{8} - 866 \beta_{7} - 236 \beta_{6} + \cdots + 18 − 1 2 β 1 1 − 2 8 8 β 1 0 − 8 0 4 β 9 + 7 6 β 8 − 8 6 6 β 7 − 2 3 6 β 6 + ⋯ + 1 8
-12*b11 - 288*b10 - 804*b9 + 76*b8 - 866*b7 - 236*b6 + 233*b5 - 51*b4 - 362*b3 - 270*b2 + 141*b1 + 18
ν 9 \nu^{9} ν 9 = = =
− 236 β 11 − 480 β 10 − 2610 β 9 + 88 β 8 − 2462 β 7 − 1334 β 6 + ⋯ + 384 - 236 \beta_{11} - 480 \beta_{10} - 2610 \beta_{9} + 88 \beta_{8} - 2462 \beta_{7} - 1334 \beta_{6} + \cdots + 384 − 2 3 6 β 1 1 − 4 8 0 β 1 0 − 2 6 1 0 β 9 + 8 8 β 8 − 2 4 6 2 β 7 − 1 3 3 4 β 6 + ⋯ + 3 8 4
-236*b11 - 480*b10 - 2610*b9 + 88*b8 - 2462*b7 - 1334*b6 + 761*b5 + 402*b4 - 1062*b3 - 762*b2 + 417*b1 + 384
ν 10 \nu^{10} ν 1 0 = = =
− 1334 β 11 − 495 β 10 − 7824 β 9 + 204 β 8 − 6291 β 7 − 5298 β 6 + ⋯ + 1889 - 1334 \beta_{11} - 495 \beta_{10} - 7824 \beta_{9} + 204 \beta_{8} - 6291 \beta_{7} - 5298 \beta_{6} + \cdots + 1889 − 1 3 3 4 β 1 1 − 4 9 5 β 1 0 − 7 8 2 4 β 9 + 2 0 4 β 8 − 6 2 9 1 β 7 − 5 2 9 8 β 6 + ⋯ + 1 8 8 9
-1334*b11 - 495*b10 - 7824*b9 + 204*b8 - 6291*b7 - 5298*b6 + 2331*b5 + 2500*b4 - 3136*b3 - 2046*b2 + 1327*b1 + 1889
ν 11 \nu^{11} ν 1 1 = = =
− 5298 β 11 + 678 β 10 − 23140 β 9 + 726 β 8 − 16756 β 7 − 18648 β 6 + ⋯ + 7815 - 5298 \beta_{11} + 678 \beta_{10} - 23140 \beta_{9} + 726 \beta_{8} - 16756 \beta_{7} - 18648 \beta_{6} + \cdots + 7815 − 5 2 9 8 β 1 1 + 6 7 8 β 1 0 − 2 3 1 4 0 β 9 + 7 2 6 β 8 − 1 6 7 5 6 β 7 − 1 8 6 4 8 β 6 + ⋯ + 7 8 1 5
-5298*b11 + 678*b10 - 23140*b9 + 726*b8 - 16756*b7 - 18648*b6 + 7923*b5 + 9189*b4 - 8536*b3 - 4679*b2 + 3928*b1 + 7815
Character values
We give the values of χ \chi χ on generators for ( Z / 684 Z ) × \left(\mathbb{Z}/684\mathbb{Z}\right)^\times ( Z / 6 8 4 Z ) × .
n n n
325 325 3 2 5
343 343 3 4 3
533 533 5 3 3
χ ( n ) \chi(n) χ ( n )
− β 4 + β 6 -\beta_{4} + \beta_{6} − β 4 + β 6
1 1 1
1 1 1
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
T 5 12 + 9 T 5 10 + 19 T 5 9 − 72 T 5 8 − 36 T 5 7 + 64 T 5 6 − 1251 T 5 5 + ⋯ + 729 T_{5}^{12} + 9 T_{5}^{10} + 19 T_{5}^{9} - 72 T_{5}^{8} - 36 T_{5}^{7} + 64 T_{5}^{6} - 1251 T_{5}^{5} + \cdots + 729 T 5 1 2 + 9 T 5 1 0 + 1 9 T 5 9 − 7 2 T 5 8 − 3 6 T 5 7 + 6 4 T 5 6 − 1 2 5 1 T 5 5 + ⋯ + 7 2 9
T5^12 + 9*T5^10 + 19*T5^9 - 72*T5^8 - 36*T5^7 + 64*T5^6 - 1251*T5^5 + 7398*T5^4 - 9747*T5^3 + 4131*T5^2 + 2916*T5 + 729
acting on S 2 n e w ( 684 , [ χ ] ) S_{2}^{\mathrm{new}}(684, [\chi]) S 2 n e w ( 6 8 4 , [ χ ] ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 12 T^{12} T 1 2
T^12
3 3 3
T 12 T^{12} T 1 2
T^12
5 5 5
T 12 + 9 T 10 + ⋯ + 729 T^{12} + 9 T^{10} + \cdots + 729 T 1 2 + 9 T 1 0 + ⋯ + 7 2 9
T^12 + 9*T^10 + 19*T^9 - 72*T^8 - 36*T^7 + 64*T^6 - 1251*T^5 + 7398*T^4 - 9747*T^3 + 4131*T^2 + 2916*T + 729
7 7 7
T 12 − 3 T 11 + ⋯ + 9 T^{12} - 3 T^{11} + \cdots + 9 T 1 2 − 3 T 1 1 + ⋯ + 9
T^12 - 3*T^11 + 21*T^10 - 22*T^9 + 201*T^8 - 186*T^7 + 1141*T^6 + 447*T^5 + 1386*T^4 - 366*T^3 + 414*T^2 + 54*T + 9
11 11 1 1
T 12 + 3 T 11 + ⋯ + 729 T^{12} + 3 T^{11} + \cdots + 729 T 1 2 + 3 T 1 1 + ⋯ + 7 2 9
T^12 + 3*T^11 + 33*T^10 - 2*T^9 + 591*T^8 + 300*T^7 + 3331*T^6 - 3231*T^5 + 7452*T^4 - 1890*T^3 + 2430*T^2 + 729
13 13 1 3
T 12 + 9 T 11 + ⋯ + 130321 T^{12} + 9 T^{11} + \cdots + 130321 T 1 2 + 9 T 1 1 + ⋯ + 1 3 0 3 2 1
T^12 + 9*T^11 + 45*T^10 + 268*T^9 + 1377*T^8 + 4077*T^7 + 20109*T^6 + 152361*T^5 + 639711*T^4 + 1178665*T^3 + 948708*T^2 + 308655*T + 130321
17 17 1 7
T 12 − 3 T 11 + ⋯ + 8982009 T^{12} - 3 T^{11} + \cdots + 8982009 T 1 2 − 3 T 1 1 + ⋯ + 8 9 8 2 0 0 9
T^12 - 3*T^11 + 9*T^10 + 30*T^9 - 1179*T^8 - 999*T^7 + 39861*T^6 + 136809*T^5 + 653913*T^4 + 2532789*T^3 + 5143824*T^2 - 10924065*T + 8982009
19 19 1 9
T 12 + 12 T 11 + ⋯ + 47045881 T^{12} + 12 T^{11} + \cdots + 47045881 T 1 2 + 1 2 T 1 1 + ⋯ + 4 7 0 4 5 8 8 1
T^12 + 12*T^11 + 33*T^10 - 201*T^9 - 1365*T^8 + 627*T^7 + 24358*T^6 + 11913*T^5 - 492765*T^4 - 1378659*T^3 + 4300593*T^2 + 29713188*T + 47045881
23 23 2 3
T 12 + ⋯ + 151585344 T^{12} + \cdots + 151585344 T 1 2 + ⋯ + 1 5 1 5 8 5 3 4 4
T^12 - 12*T^11 + 69*T^10 - 251*T^9 + 714*T^8 + 3729*T^7 - 40985*T^6 + 36522*T^5 + 856980*T^4 - 4777056*T^3 + 22161600*T^2 - 75792672*T + 151585344
29 29 2 9
T 12 + 27 T 11 + ⋯ + 263169 T^{12} + 27 T^{11} + \cdots + 263169 T 1 2 + 2 7 T 1 1 + ⋯ + 2 6 3 1 6 9
T^12 + 27*T^11 + 369*T^10 + 3023*T^9 + 15840*T^8 + 41454*T^7 - 54107*T^6 - 832302*T^5 - 1363392*T^4 + 6261165*T^3 + 19768293*T^2 + 872613*T + 263169
31 31 3 1
T 12 − 6 T 11 + ⋯ + 130321 T^{12} - 6 T^{11} + \cdots + 130321 T 1 2 − 6 T 1 1 + ⋯ + 1 3 0 3 2 1
T^12 - 6*T^11 + 126*T^10 - 90*T^9 + 8508*T^8 - 14955*T^7 + 205549*T^6 - 321024*T^5 + 3546369*T^4 - 6277068*T^3 + 19798323*T^2 + 1584429*T + 130321
37 37 3 7
( T 6 + 6 T 5 + ⋯ + 11096 ) 2 (T^{6} + 6 T^{5} + \cdots + 11096)^{2} ( T 6 + 6 T 5 + ⋯ + 1 1 0 9 6 ) 2
(T^6 + 6*T^5 - 81*T^4 - 639*T^3 + 78*T^2 + 7836*T + 11096)^2
41 41 4 1
T 12 + ⋯ + 360278361 T^{12} + \cdots + 360278361 T 1 2 + ⋯ + 3 6 0 2 7 8 3 6 1
T^12 + 3*T^11 - 21*T^10 - 910*T^9 + 6492*T^8 - 44274*T^7 + 492832*T^6 - 1806273*T^5 + 3831138*T^4 - 21232152*T^3 + 23782896*T^2 + 150671178*T + 360278361
43 43 4 3
T 12 − 27 T 11 + ⋯ + 1203409 T^{12} - 27 T^{11} + \cdots + 1203409 T 1 2 − 2 7 T 1 1 + ⋯ + 1 2 0 3 4 0 9
T^12 - 27*T^11 + 309*T^10 - 2142*T^9 + 11874*T^8 - 50418*T^7 + 137242*T^6 - 370035*T^5 + 771306*T^4 + 1881450*T^3 + 18911724*T^2 - 7325766*T + 1203409
47 47 4 7
T 12 − 15 T 11 + ⋯ + 729 T^{12} - 15 T^{11} + \cdots + 729 T 1 2 − 1 5 T 1 1 + ⋯ + 7 2 9
T^12 - 15*T^11 - 51*T^10 + 460*T^9 + 32919*T^8 - 417405*T^7 + 1894231*T^6 - 3504195*T^5 + 3161673*T^4 - 812565*T^3 + 1256796*T^2 - 10935*T + 729
53 53 5 3
T 12 − 21 T 11 + ⋯ + 95004009 T^{12} - 21 T^{11} + \cdots + 95004009 T 1 2 − 2 1 T 1 1 + ⋯ + 9 5 0 0 4 0 0 9
T^12 - 21*T^11 + 177*T^10 - 890*T^9 + 3522*T^8 - 4470*T^7 + 42652*T^6 - 666045*T^5 + 1156302*T^4 + 1832436*T^3 + 34913754*T^2 + 80003376*T + 95004009
59 59 5 9
T 12 + ⋯ + 12621848409 T^{12} + \cdots + 12621848409 T 1 2 + ⋯ + 1 2 6 2 1 8 4 8 4 0 9
T^12 - 48*T^11 + 1107*T^10 - 16278*T^9 + 183636*T^8 - 1690956*T^7 + 11066715*T^6 - 40087386*T^5 + 70948224*T^4 - 282191040*T^3 + 812641086*T^2 + 3266938413*T + 12621848409
61 61 6 1
T 12 + ⋯ + 1418049649 T^{12} + \cdots + 1418049649 T 1 2 + ⋯ + 1 4 1 8 0 4 9 6 4 9
T^12 + 6*T^11 - 141*T^10 - 560*T^9 + 8838*T^8 - 18414*T^7 + 449985*T^6 + 1422378*T^5 + 9943830*T^4 - 39761552*T^3 + 276693828*T^2 - 727194327*T + 1418049649
67 67 6 7
T 12 + ⋯ + 6080256576 T^{12} + \cdots + 6080256576 T 1 2 + ⋯ + 6 0 8 0 2 5 6 5 7 6
T^12 - 24*T^11 + 483*T^10 - 6139*T^9 + 59610*T^8 - 406245*T^7 + 2284291*T^6 - 4719942*T^5 - 32415444*T^4 + 205544736*T^3 + 19649952*T^2 - 2720114784*T + 6080256576
71 71 7 1
T 12 + 45 T 10 + ⋯ + 16842816 T^{12} + 45 T^{10} + \cdots + 16842816 T 1 2 + 4 5 T 1 0 + ⋯ + 1 6 8 4 2 8 1 6
T^12 + 45*T^10 + 487*T^9 + 8442*T^8 + 34011*T^7 + 1016551*T^6 + 5907222*T^5 + 13286916*T^4 + 17404416*T^3 + 19478880*T^2 - 43879968*T + 16842816
73 73 7 3
T 12 − 30 T 11 + ⋯ + 36864 T^{12} - 30 T^{11} + \cdots + 36864 T 1 2 − 3 0 T 1 1 + ⋯ + 3 6 8 6 4
T^12 - 30*T^11 + 375*T^10 - 2947*T^9 + 21024*T^8 - 109335*T^7 + 259069*T^6 - 66444*T^5 + 211536*T^4 + 89088*T^3 + 78336*T^2 - 82944*T + 36864
79 79 7 9
T 12 + ⋯ + 1548343801 T^{12} + \cdots + 1548343801 T 1 2 + ⋯ + 1 5 4 8 3 4 3 8 0 1
T^12 - 3*T^11 + 39*T^10 + 259*T^9 - 7938*T^8 + 10548*T^7 + 330321*T^6 - 5080752*T^5 + 80469864*T^4 - 476164415*T^3 + 1473881775*T^2 - 2218221177*T + 1548343801
83 83 8 3
T 12 + ⋯ + 11939714361 T^{12} + \cdots + 11939714361 T 1 2 + ⋯ + 1 1 9 3 9 7 1 4 3 6 1
T^12 + 3*T^11 + 189*T^10 + 114*T^9 + 24957*T^8 + 14472*T^7 + 1386243*T^6 - 866295*T^5 + 53308368*T^4 - 19603782*T^3 + 958378392*T^2 - 672659964*T + 11939714361
89 89 8 9
T 12 + ⋯ + 7695324729 T^{12} + \cdots + 7695324729 T 1 2 + ⋯ + 7 6 9 5 3 2 4 7 2 9
T^12 - 18*T^11 + 117*T^10 - 2205*T^9 + 26244*T^8 + 24948*T^7 + 1486998*T^6 - 37993293*T^5 + 125240742*T^4 + 321329349*T^3 + 1314529155*T^2 + 2430102546*T + 7695324729
97 97 9 7
T 12 + ⋯ + 16983563041 T^{12} + \cdots + 16983563041 T 1 2 + ⋯ + 1 6 9 8 3 5 6 3 0 4 1
T^12 - 12*T^11 - 39*T^10 + 2124*T^9 - 19416*T^8 - 14412*T^7 + 4516399*T^6 - 66305706*T^5 + 595015248*T^4 - 3870585684*T^3 + 24477528468*T^2 + 31607403735*T + 16983563041
show more
show less