Properties

Label 76.2.i.a
Level 7676
Weight 22
Character orbit 76.i
Analytic conductor 0.6070.607
Analytic rank 00
Dimension 1212
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [76,2,Mod(5,76)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(76, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([0, 16]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("76.5");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 76=2219 76 = 2^{2} \cdot 19
Weight: k k == 2 2
Character orbit: [χ][\chi] == 76.i (of order 99, degree 66, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 0.6068630553620.606863055362
Analytic rank: 00
Dimension: 1212
Relative dimension: 22 over Q(ζ9)\Q(\zeta_{9})
Coefficient field: Q[x]/(x12)\mathbb{Q}[x]/(x^{12} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x126x113x10+70x915x8426x7+64x6+1659x5+267x4++4161 x^{12} - 6 x^{11} - 3 x^{10} + 70 x^{9} - 15 x^{8} - 426 x^{7} + 64 x^{6} + 1659 x^{5} + 267 x^{4} + \cdots + 4161 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: SU(2)[C9]\mathrm{SU}(2)[C_{9}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β111,\beta_1,\ldots,\beta_{11} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β11+β9+β7+1)q3+(β9β7++β1)q5+(β9+β6++β3)q7+(β11+β10β8++1)q9++(β11+β10+5β9+1)q99+O(q100) q + (\beta_{11} + \beta_{9} + \beta_{7} + \cdots - 1) q^{3} + ( - \beta_{9} - \beta_{7} + \cdots + \beta_1) q^{5} + (\beta_{9} + \beta_{6} + \cdots + \beta_{3}) q^{7} + ( - \beta_{11} + \beta_{10} - \beta_{8} + \cdots + 1) q^{9}+ \cdots + (\beta_{11} + \beta_{10} + 5 \beta_{9} + \cdots - 1) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 12q3q3+3q73q9+3q119q1315q153q1712q1915q2112q2318q259q27+27q29+6q31+48q33+33q3512q37+60q39+6q99+O(q100) 12 q - 3 q^{3} + 3 q^{7} - 3 q^{9} + 3 q^{11} - 9 q^{13} - 15 q^{15} - 3 q^{17} - 12 q^{19} - 15 q^{21} - 12 q^{23} - 18 q^{25} - 9 q^{27} + 27 q^{29} + 6 q^{31} + 48 q^{33} + 33 q^{35} - 12 q^{37} + 60 q^{39}+ \cdots - 6 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x126x113x10+70x915x8426x7+64x6+1659x5+267x4++4161 x^{12} - 6 x^{11} - 3 x^{10} + 70 x^{9} - 15 x^{8} - 426 x^{7} + 64 x^{6} + 1659 x^{5} + 267 x^{4} + \cdots + 4161 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== (1861ν11+59764ν10261706ν9459237ν8+3512934ν7+104999089)/8740601 ( - 1861 \nu^{11} + 59764 \nu^{10} - 261706 \nu^{9} - 459237 \nu^{8} + 3512934 \nu^{7} + \cdots - 104999089 ) / 8740601 Copy content Toggle raw display
β3\beta_{3}== (3014ν1125876ν10+250822ν9+84243ν82839567ν7++91337490)/8740601 ( - 3014 \nu^{11} - 25876 \nu^{10} + 250822 \nu^{9} + 84243 \nu^{8} - 2839567 \nu^{7} + \cdots + 91337490 ) / 8740601 Copy content Toggle raw display
β4\beta_{4}== (7410ν11+92642ν10242771ν9590557ν8+2422014ν7+39192874)/8740601 ( - 7410 \nu^{11} + 92642 \nu^{10} - 242771 \nu^{9} - 590557 \nu^{8} + 2422014 \nu^{7} + \cdots - 39192874 ) / 8740601 Copy content Toggle raw display
β5\beta_{5}== (7410ν11+11132ν10276099ν9+170744ν8+2370458ν7+26703616)/8740601 ( 7410 \nu^{11} + 11132 \nu^{10} - 276099 \nu^{9} + 170744 \nu^{8} + 2370458 \nu^{7} + \cdots - 26703616 ) / 8740601 Copy content Toggle raw display
β6\beta_{6}== (8405ν11+8018ν10346679ν9+455105ν8+2627431ν7+11328251)/8740601 ( 8405 \nu^{11} + 8018 \nu^{10} - 346679 \nu^{9} + 455105 \nu^{8} + 2627431 \nu^{7} + \cdots - 11328251 ) / 8740601 Copy content Toggle raw display
β7\beta_{7}== (15815ν1189341ν1080323ν9+1088115ν8105905ν7++1553197)/8740601 ( 15815 \nu^{11} - 89341 \nu^{10} - 80323 \nu^{9} + 1088115 \nu^{8} - 105905 \nu^{7} + \cdots + 1553197 ) / 8740601 Copy content Toggle raw display
β8\beta_{8}== (16036ν1188198ν10+124775ν9+357074ν82014841ν7++33629265)/8740601 ( 16036 \nu^{11} - 88198 \nu^{10} + 124775 \nu^{9} + 357074 \nu^{8} - 2014841 \nu^{7} + \cdots + 33629265 ) / 8740601 Copy content Toggle raw display
β9\beta_{9}== (1506ν11+8283ν10+6301ν990477ν81422ν7+485184ν6+745423)/514153 ( - 1506 \nu^{11} + 8283 \nu^{10} + 6301 \nu^{9} - 90477 \nu^{8} - 1422 \nu^{7} + 485184 \nu^{6} + \cdots - 745423 ) / 514153 Copy content Toggle raw display
β10\beta_{10}== (32367ν11175660ν10+8466ν9+1222749ν8536869ν7++20539212)/8740601 ( 32367 \nu^{11} - 175660 \nu^{10} + 8466 \nu^{9} + 1222749 \nu^{8} - 536869 \nu^{7} + \cdots + 20539212 ) / 8740601 Copy content Toggle raw display
β11\beta_{11}== (382ν112101ν10+162ν9+12670ν8+605ν742146ν6+476163)/80189 ( 382 \nu^{11} - 2101 \nu^{10} + 162 \nu^{9} + 12670 \nu^{8} + 605 \nu^{7} - 42146 \nu^{6} + \cdots - 476163 ) / 80189 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β10β9+β8β7+β6β5β4+β2+β1+3 -\beta_{10} - \beta_{9} + \beta_{8} - \beta_{7} + \beta_{6} - \beta_{5} - \beta_{4} + \beta_{2} + \beta _1 + 3 Copy content Toggle raw display
ν3\nu^{3}== β113β10β9+β82β7+β6+2β53β4+3β1+2 \beta_{11} - 3\beta_{10} - \beta_{9} + \beta_{8} - 2\beta_{7} + \beta_{6} + 2\beta_{5} - 3\beta_{4} + 3\beta _1 + 2 Copy content Toggle raw display
ν4\nu^{4}== β119β107β9+6β812β7+8β613β4++5 \beta_{11} - 9 \beta_{10} - 7 \beta_{9} + 6 \beta_{8} - 12 \beta_{7} + 8 \beta_{6} - 13 \beta_{4} + \cdots + 5 Copy content Toggle raw display
ν5\nu^{5}== 8β1128β1022β9+10β834β7+11β6+12β5++4 8 \beta_{11} - 28 \beta_{10} - 22 \beta_{9} + 10 \beta_{8} - 34 \beta_{7} + 11 \beta_{6} + 12 \beta_{5} + \cdots + 4 Copy content Toggle raw display
ν6\nu^{6}== 11β1162β1071β9+26β8108β7+26β6+25β5+6 11 \beta_{11} - 62 \beta_{10} - 71 \beta_{9} + 26 \beta_{8} - 108 \beta_{7} + 26 \beta_{6} + 25 \beta_{5} + \cdots - 6 Copy content Toggle raw display
ν7\nu^{7}== 26β11152β10261β9+42β8327β712β6+87β5+5 26 \beta_{11} - 152 \beta_{10} - 261 \beta_{9} + 42 \beta_{8} - 327 \beta_{7} - 12 \beta_{6} + 87 \beta_{5} + \cdots - 5 Copy content Toggle raw display
ν8\nu^{8}== 12β11288β10804β9+76β8866β7236β6++18 - 12 \beta_{11} - 288 \beta_{10} - 804 \beta_{9} + 76 \beta_{8} - 866 \beta_{7} - 236 \beta_{6} + \cdots + 18 Copy content Toggle raw display
ν9\nu^{9}== 236β11480β102610β9+88β82462β71334β6++384 - 236 \beta_{11} - 480 \beta_{10} - 2610 \beta_{9} + 88 \beta_{8} - 2462 \beta_{7} - 1334 \beta_{6} + \cdots + 384 Copy content Toggle raw display
ν10\nu^{10}== 1334β11495β107824β9+204β86291β75298β6++1889 - 1334 \beta_{11} - 495 \beta_{10} - 7824 \beta_{9} + 204 \beta_{8} - 6291 \beta_{7} - 5298 \beta_{6} + \cdots + 1889 Copy content Toggle raw display
ν11\nu^{11}== 5298β11+678β1023140β9+726β816756β718648β6++7815 - 5298 \beta_{11} + 678 \beta_{10} - 23140 \beta_{9} + 726 \beta_{8} - 16756 \beta_{7} - 18648 \beta_{6} + \cdots + 7815 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/76Z)×\left(\mathbb{Z}/76\mathbb{Z}\right)^\times.

nn 2121 3939
χ(n)\chi(n) β7-\beta_{7} 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
5.1
2.75227 0.342020i
−1.75227 0.342020i
2.26253 0.984808i
−1.26253 0.984808i
2.26253 + 0.984808i
−1.26253 + 0.984808i
−1.25236 + 0.642788i
2.25236 + 0.642788i
2.75227 + 0.342020i
−1.75227 + 0.342020i
−1.25236 0.642788i
2.25236 0.642788i
0 −0.467454 + 2.65106i 0 −0.982226 0.824185i 0 1.67233 + 2.89656i 0 −3.99055 1.45244i 0
5.2 0 0.314751 1.78504i 0 0.216181 + 0.181398i 0 −0.579936 1.00448i 0 −0.268219 0.0976237i 0
9.1 0 −0.834130 + 0.699919i 0 3.00735 + 1.09458i 0 0.278396 0.482195i 0 −0.315057 + 1.78678i 0
9.2 0 1.86622 1.56594i 0 −2.06765 0.752564i 0 −1.48413 + 2.57059i 0 0.509650 2.89037i 0
17.1 0 −0.834130 0.699919i 0 3.00735 1.09458i 0 0.278396 + 0.482195i 0 −0.315057 1.78678i 0
17.2 0 1.86622 + 1.56594i 0 −2.06765 + 0.752564i 0 −1.48413 2.57059i 0 0.509650 + 2.89037i 0
25.1 0 −2.83638 1.03236i 0 −0.658711 3.73574i 0 −0.0695116 + 0.120398i 0 4.68114 + 3.92794i 0
25.2 0 0.456991 + 0.166331i 0 0.485063 + 2.75093i 0 1.68285 2.91479i 0 −2.11696 1.77634i 0
61.1 0 −0.467454 2.65106i 0 −0.982226 + 0.824185i 0 1.67233 2.89656i 0 −3.99055 + 1.45244i 0
61.2 0 0.314751 + 1.78504i 0 0.216181 0.181398i 0 −0.579936 + 1.00448i 0 −0.268219 + 0.0976237i 0
73.1 0 −2.83638 + 1.03236i 0 −0.658711 + 3.73574i 0 −0.0695116 0.120398i 0 4.68114 3.92794i 0
73.2 0 0.456991 0.166331i 0 0.485063 2.75093i 0 1.68285 + 2.91479i 0 −2.11696 + 1.77634i 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 5.2
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
19.e even 9 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 76.2.i.a 12
3.b odd 2 1 684.2.bo.c 12
4.b odd 2 1 304.2.u.e 12
19.e even 9 1 inner 76.2.i.a 12
19.e even 9 1 1444.2.a.h 6
19.e even 9 2 1444.2.e.g 12
19.f odd 18 1 1444.2.a.g 6
19.f odd 18 2 1444.2.e.h 12
57.l odd 18 1 684.2.bo.c 12
76.k even 18 1 5776.2.a.by 6
76.l odd 18 1 304.2.u.e 12
76.l odd 18 1 5776.2.a.bw 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
76.2.i.a 12 1.a even 1 1 trivial
76.2.i.a 12 19.e even 9 1 inner
304.2.u.e 12 4.b odd 2 1
304.2.u.e 12 76.l odd 18 1
684.2.bo.c 12 3.b odd 2 1
684.2.bo.c 12 57.l odd 18 1
1444.2.a.g 6 19.f odd 18 1
1444.2.a.h 6 19.e even 9 1
1444.2.e.g 12 19.e even 9 2
1444.2.e.h 12 19.f odd 18 2
5776.2.a.bw 6 76.l odd 18 1
5776.2.a.by 6 76.k even 18 1

Hecke kernels

This newform subspace is the entire newspace S2new(76,[χ])S_{2}^{\mathrm{new}}(76, [\chi]).

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T12 T^{12} Copy content Toggle raw display
33 T12+3T11++361 T^{12} + 3 T^{11} + \cdots + 361 Copy content Toggle raw display
55 T12+9T10++729 T^{12} + 9 T^{10} + \cdots + 729 Copy content Toggle raw display
77 T123T11++9 T^{12} - 3 T^{11} + \cdots + 9 Copy content Toggle raw display
1111 T123T11++729 T^{12} - 3 T^{11} + \cdots + 729 Copy content Toggle raw display
1313 T12+9T11++130321 T^{12} + 9 T^{11} + \cdots + 130321 Copy content Toggle raw display
1717 T12+3T11++8982009 T^{12} + 3 T^{11} + \cdots + 8982009 Copy content Toggle raw display
1919 T12+12T11++47045881 T^{12} + 12 T^{11} + \cdots + 47045881 Copy content Toggle raw display
2323 T12++151585344 T^{12} + \cdots + 151585344 Copy content Toggle raw display
2929 T1227T11++263169 T^{12} - 27 T^{11} + \cdots + 263169 Copy content Toggle raw display
3131 T126T11++130321 T^{12} - 6 T^{11} + \cdots + 130321 Copy content Toggle raw display
3737 (T6+6T5++11096)2 (T^{6} + 6 T^{5} + \cdots + 11096)^{2} Copy content Toggle raw display
4141 T12++360278361 T^{12} + \cdots + 360278361 Copy content Toggle raw display
4343 T1227T11++1203409 T^{12} - 27 T^{11} + \cdots + 1203409 Copy content Toggle raw display
4747 T12+15T11++729 T^{12} + 15 T^{11} + \cdots + 729 Copy content Toggle raw display
5353 T12+21T11++95004009 T^{12} + 21 T^{11} + \cdots + 95004009 Copy content Toggle raw display
5959 T12++12621848409 T^{12} + \cdots + 12621848409 Copy content Toggle raw display
6161 T12++1418049649 T^{12} + \cdots + 1418049649 Copy content Toggle raw display
6767 T12++6080256576 T^{12} + \cdots + 6080256576 Copy content Toggle raw display
7171 T12+45T10++16842816 T^{12} + 45 T^{10} + \cdots + 16842816 Copy content Toggle raw display
7373 T1230T11++36864 T^{12} - 30 T^{11} + \cdots + 36864 Copy content Toggle raw display
7979 T12++1548343801 T^{12} + \cdots + 1548343801 Copy content Toggle raw display
8383 T12++11939714361 T^{12} + \cdots + 11939714361 Copy content Toggle raw display
8989 T12++7695324729 T^{12} + \cdots + 7695324729 Copy content Toggle raw display
9797 T12++16983563041 T^{12} + \cdots + 16983563041 Copy content Toggle raw display
show more
show less