Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [76,2,Mod(5,76)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(76, base_ring=CyclotomicField(18))
chi = DirichletCharacter(H, H._module([0, 16]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("76.5");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 76.i (of order , degree , minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Relative dimension: | over |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | yes |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
5.1 |
|
0 | −0.467454 | + | 2.65106i | 0 | −0.982226 | − | 0.824185i | 0 | 1.67233 | + | 2.89656i | 0 | −3.99055 | − | 1.45244i | 0 | ||||||||||||||||||||||||||||||||||||||||||||||
5.2 | 0 | 0.314751 | − | 1.78504i | 0 | 0.216181 | + | 0.181398i | 0 | −0.579936 | − | 1.00448i | 0 | −0.268219 | − | 0.0976237i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||
9.1 | 0 | −0.834130 | + | 0.699919i | 0 | 3.00735 | + | 1.09458i | 0 | 0.278396 | − | 0.482195i | 0 | −0.315057 | + | 1.78678i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||
9.2 | 0 | 1.86622 | − | 1.56594i | 0 | −2.06765 | − | 0.752564i | 0 | −1.48413 | + | 2.57059i | 0 | 0.509650 | − | 2.89037i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||
17.1 | 0 | −0.834130 | − | 0.699919i | 0 | 3.00735 | − | 1.09458i | 0 | 0.278396 | + | 0.482195i | 0 | −0.315057 | − | 1.78678i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||
17.2 | 0 | 1.86622 | + | 1.56594i | 0 | −2.06765 | + | 0.752564i | 0 | −1.48413 | − | 2.57059i | 0 | 0.509650 | + | 2.89037i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||
25.1 | 0 | −2.83638 | − | 1.03236i | 0 | −0.658711 | − | 3.73574i | 0 | −0.0695116 | + | 0.120398i | 0 | 4.68114 | + | 3.92794i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||
25.2 | 0 | 0.456991 | + | 0.166331i | 0 | 0.485063 | + | 2.75093i | 0 | 1.68285 | − | 2.91479i | 0 | −2.11696 | − | 1.77634i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||
61.1 | 0 | −0.467454 | − | 2.65106i | 0 | −0.982226 | + | 0.824185i | 0 | 1.67233 | − | 2.89656i | 0 | −3.99055 | + | 1.45244i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||
61.2 | 0 | 0.314751 | + | 1.78504i | 0 | 0.216181 | − | 0.181398i | 0 | −0.579936 | + | 1.00448i | 0 | −0.268219 | + | 0.0976237i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||
73.1 | 0 | −2.83638 | + | 1.03236i | 0 | −0.658711 | + | 3.73574i | 0 | −0.0695116 | − | 0.120398i | 0 | 4.68114 | − | 3.92794i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||
73.2 | 0 | 0.456991 | − | 0.166331i | 0 | 0.485063 | − | 2.75093i | 0 | 1.68285 | + | 2.91479i | 0 | −2.11696 | + | 1.77634i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
19.e | even | 9 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 76.2.i.a | ✓ | 12 |
3.b | odd | 2 | 1 | 684.2.bo.c | 12 | ||
4.b | odd | 2 | 1 | 304.2.u.e | 12 | ||
19.e | even | 9 | 1 | inner | 76.2.i.a | ✓ | 12 |
19.e | even | 9 | 1 | 1444.2.a.h | 6 | ||
19.e | even | 9 | 2 | 1444.2.e.g | 12 | ||
19.f | odd | 18 | 1 | 1444.2.a.g | 6 | ||
19.f | odd | 18 | 2 | 1444.2.e.h | 12 | ||
57.l | odd | 18 | 1 | 684.2.bo.c | 12 | ||
76.k | even | 18 | 1 | 5776.2.a.by | 6 | ||
76.l | odd | 18 | 1 | 304.2.u.e | 12 | ||
76.l | odd | 18 | 1 | 5776.2.a.bw | 6 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
76.2.i.a | ✓ | 12 | 1.a | even | 1 | 1 | trivial |
76.2.i.a | ✓ | 12 | 19.e | even | 9 | 1 | inner |
304.2.u.e | 12 | 4.b | odd | 2 | 1 | ||
304.2.u.e | 12 | 76.l | odd | 18 | 1 | ||
684.2.bo.c | 12 | 3.b | odd | 2 | 1 | ||
684.2.bo.c | 12 | 57.l | odd | 18 | 1 | ||
1444.2.a.g | 6 | 19.f | odd | 18 | 1 | ||
1444.2.a.h | 6 | 19.e | even | 9 | 1 | ||
1444.2.e.g | 12 | 19.e | even | 9 | 2 | ||
1444.2.e.h | 12 | 19.f | odd | 18 | 2 | ||
5776.2.a.bw | 6 | 76.l | odd | 18 | 1 | ||
5776.2.a.by | 6 | 76.k | even | 18 | 1 |
Hecke kernels
This newform subspace is the entire newspace .