L(s) = 1 | + (−0.834 − 0.699i)3-s + (3.00 − 1.09i)5-s + (0.278 + 0.482i)7-s + (−0.315 − 1.78i)9-s + (−1.96 + 3.39i)11-s + (−3.19 + 2.67i)13-s + (−3.27 − 1.19i)15-s + (−0.660 + 3.74i)17-s + (−1.84 − 3.94i)19-s + (0.105 − 0.597i)21-s + (4.67 + 1.70i)23-s + (4.01 − 3.36i)25-s + (−2.62 + 4.53i)27-s + (0.0201 + 0.114i)29-s + (−3.54 − 6.13i)31-s + ⋯ |
L(s) = 1 | + (−0.481 − 0.404i)3-s + (1.34 − 0.489i)5-s + (0.105 + 0.182i)7-s + (−0.105 − 0.595i)9-s + (−0.591 + 1.02i)11-s + (−0.885 + 0.743i)13-s + (−0.845 − 0.307i)15-s + (−0.160 + 0.907i)17-s + (−0.423 − 0.906i)19-s + (0.0229 − 0.130i)21-s + (0.974 + 0.354i)23-s + (0.803 − 0.673i)25-s + (−0.504 + 0.873i)27-s + (0.00374 + 0.0212i)29-s + (−0.636 − 1.10i)31-s + ⋯ |
Λ(s)=(=(76s/2ΓC(s)L(s)(0.899+0.436i)Λ(2−s)
Λ(s)=(=(76s/2ΓC(s+1/2)L(s)(0.899+0.436i)Λ(1−s)
Degree: |
2 |
Conductor: |
76
= 22⋅19
|
Sign: |
0.899+0.436i
|
Analytic conductor: |
0.606863 |
Root analytic conductor: |
0.779014 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ76(17,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 76, ( :1/2), 0.899+0.436i)
|
Particular Values
L(1) |
≈ |
0.908797−0.208693i |
L(21) |
≈ |
0.908797−0.208693i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 19 | 1+(1.84+3.94i)T |
good | 3 | 1+(0.834+0.699i)T+(0.520+2.95i)T2 |
| 5 | 1+(−3.00+1.09i)T+(3.83−3.21i)T2 |
| 7 | 1+(−0.278−0.482i)T+(−3.5+6.06i)T2 |
| 11 | 1+(1.96−3.39i)T+(−5.5−9.52i)T2 |
| 13 | 1+(3.19−2.67i)T+(2.25−12.8i)T2 |
| 17 | 1+(0.660−3.74i)T+(−15.9−5.81i)T2 |
| 23 | 1+(−4.67−1.70i)T+(17.6+14.7i)T2 |
| 29 | 1+(−0.0201−0.114i)T+(−27.2+9.91i)T2 |
| 31 | 1+(3.54+6.13i)T+(−15.5+26.8i)T2 |
| 37 | 1+5.67T+37T2 |
| 41 | 1+(−9.20−7.72i)T+(7.11+40.3i)T2 |
| 43 | 1+(−6.74+2.45i)T+(32.9−27.6i)T2 |
| 47 | 1+(0.00419+0.0237i)T+(−44.1+16.0i)T2 |
| 53 | 1+(8.18+2.97i)T+(40.6+34.0i)T2 |
| 59 | 1+(−1.88+10.7i)T+(−55.4−20.1i)T2 |
| 61 | 1+(11.7+4.29i)T+(46.7+39.2i)T2 |
| 67 | 1+(−2.27−12.8i)T+(−62.9+22.9i)T2 |
| 71 | 1+(−3.17+1.15i)T+(54.3−45.6i)T2 |
| 73 | 1+(−0.338−0.284i)T+(12.6+71.8i)T2 |
| 79 | 1+(−1.31−1.10i)T+(13.7+77.7i)T2 |
| 83 | 1+(2.90+5.02i)T+(−41.5+71.8i)T2 |
| 89 | 1+(−1.83+1.53i)T+(15.4−87.6i)T2 |
| 97 | 1+(−1.86+10.5i)T+(−91.1−33.1i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.42132497675847109177316524668, −13.01449916753309294567366676325, −12.60615347896638500951284125645, −11.21612627929494277208417656494, −9.796543658751649818778285741020, −9.051653752364956815312864369710, −7.18938297363131295390613072542, −6.02769541008150040947497117186, −4.83062161754843451185583484967, −2.05046261599182544128095747837,
2.67993320624799818480210094506, 5.09272918690391610210629142956, 5.94784578336753004732095096395, 7.55392246888851403107939255643, 9.174095304755864053013076302092, 10.52489651494538019896668980920, 10.76387517127708070766473489228, 12.52201386551504989283397396602, 13.72003487473720876579840719793, 14.34061974395676903792073792611