L(s) = 1 | + (−1.04 + 1.38i)3-s − 2.40·5-s + (−1.53 + 2.65i)7-s + (−0.810 − 2.88i)9-s + (−2.96 + 5.14i)11-s + (2.81 − 4.88i)13-s + (2.51 − 3.32i)15-s + (1.15 − 2.00i)17-s + (1.16 − 4.19i)19-s + (−2.05 − 4.89i)21-s + (−0.654 + 1.13i)23-s + 0.787·25-s + (4.83 + 1.90i)27-s + 6.77·29-s + (−4.86 − 8.42i)31-s + ⋯ |
L(s) = 1 | + (−0.604 + 0.796i)3-s − 1.07·5-s + (−0.578 + 1.00i)7-s + (−0.270 − 0.962i)9-s + (−0.894 + 1.55i)11-s + (0.782 − 1.35i)13-s + (0.649 − 0.857i)15-s + (0.280 − 0.485i)17-s + (0.267 − 0.963i)19-s + (−0.449 − 1.06i)21-s + (−0.136 + 0.236i)23-s + 0.157·25-s + (0.930 + 0.366i)27-s + 1.25·29-s + (−0.873 − 1.51i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 684 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0408 + 0.999i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 684 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.0408 + 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.172339 - 0.165436i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.172339 - 0.165436i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (1.04 - 1.38i)T \) |
| 19 | \( 1 + (-1.16 + 4.19i)T \) |
good | 5 | \( 1 + 2.40T + 5T^{2} \) |
| 7 | \( 1 + (1.53 - 2.65i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (2.96 - 5.14i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (-2.81 + 4.88i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + (-1.15 + 2.00i)T + (-8.5 - 14.7i)T^{2} \) |
| 23 | \( 1 + (0.654 - 1.13i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 - 6.77T + 29T^{2} \) |
| 31 | \( 1 + (4.86 + 8.42i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + 2.91T + 37T^{2} \) |
| 41 | \( 1 + 3.91T + 41T^{2} \) |
| 43 | \( 1 + (0.0602 + 0.104i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + 10.0T + 47T^{2} \) |
| 53 | \( 1 + (4.85 + 8.41i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 - 8.36T + 59T^{2} \) |
| 61 | \( 1 - 9.94T + 61T^{2} \) |
| 67 | \( 1 + (-5.03 + 8.72i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (1.00 - 1.73i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + (4.09 - 7.10i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (5.70 + 9.88i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (2.77 - 4.79i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + (4.48 + 7.76i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (3.43 + 5.94i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.14626090537871023743015127011, −9.667694441241046823229402917963, −8.560322336303508901088171856978, −7.71492172743610996736249665567, −6.67563433049463548615798224008, −5.50216074994540392922269653028, −4.89211453342603558962411754844, −3.70318661592580024131849984954, −2.73275068356261620783521161849, −0.15036194332776219697060408211,
1.26216060605804121714939882419, 3.24076092912795527119664760624, 4.06007225616521542944856898926, 5.41459274234205605577551542564, 6.44532378597224373293675327304, 7.07120807693670211844046121351, 8.135555735470160378796431540586, 8.511593728947381032890867110032, 10.17401362077193193015993888724, 10.84979824646347076765435118927