L(s) = 1 | + (−1.04 + 1.38i)3-s − 2.40·5-s + (−1.53 + 2.65i)7-s + (−0.810 − 2.88i)9-s + (−2.96 + 5.14i)11-s + (2.81 − 4.88i)13-s + (2.51 − 3.32i)15-s + (1.15 − 2.00i)17-s + (1.16 − 4.19i)19-s + (−2.05 − 4.89i)21-s + (−0.654 + 1.13i)23-s + 0.787·25-s + (4.83 + 1.90i)27-s + 6.77·29-s + (−4.86 − 8.42i)31-s + ⋯ |
L(s) = 1 | + (−0.604 + 0.796i)3-s − 1.07·5-s + (−0.578 + 1.00i)7-s + (−0.270 − 0.962i)9-s + (−0.894 + 1.55i)11-s + (0.782 − 1.35i)13-s + (0.649 − 0.857i)15-s + (0.280 − 0.485i)17-s + (0.267 − 0.963i)19-s + (−0.449 − 1.06i)21-s + (−0.136 + 0.236i)23-s + 0.157·25-s + (0.930 + 0.366i)27-s + 1.25·29-s + (−0.873 − 1.51i)31-s + ⋯ |
Λ(s)=(=(684s/2ΓC(s)L(s)(0.0408+0.999i)Λ(2−s)
Λ(s)=(=(684s/2ΓC(s+1/2)L(s)(0.0408+0.999i)Λ(1−s)
Degree: |
2 |
Conductor: |
684
= 22⋅32⋅19
|
Sign: |
0.0408+0.999i
|
Analytic conductor: |
5.46176 |
Root analytic conductor: |
2.33704 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ684(277,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 684, ( :1/2), 0.0408+0.999i)
|
Particular Values
L(1) |
≈ |
0.172339−0.165436i |
L(21) |
≈ |
0.172339−0.165436i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+(1.04−1.38i)T |
| 19 | 1+(−1.16+4.19i)T |
good | 5 | 1+2.40T+5T2 |
| 7 | 1+(1.53−2.65i)T+(−3.5−6.06i)T2 |
| 11 | 1+(2.96−5.14i)T+(−5.5−9.52i)T2 |
| 13 | 1+(−2.81+4.88i)T+(−6.5−11.2i)T2 |
| 17 | 1+(−1.15+2.00i)T+(−8.5−14.7i)T2 |
| 23 | 1+(0.654−1.13i)T+(−11.5−19.9i)T2 |
| 29 | 1−6.77T+29T2 |
| 31 | 1+(4.86+8.42i)T+(−15.5+26.8i)T2 |
| 37 | 1+2.91T+37T2 |
| 41 | 1+3.91T+41T2 |
| 43 | 1+(0.0602+0.104i)T+(−21.5+37.2i)T2 |
| 47 | 1+10.0T+47T2 |
| 53 | 1+(4.85+8.41i)T+(−26.5+45.8i)T2 |
| 59 | 1−8.36T+59T2 |
| 61 | 1−9.94T+61T2 |
| 67 | 1+(−5.03+8.72i)T+(−33.5−58.0i)T2 |
| 71 | 1+(1.00−1.73i)T+(−35.5−61.4i)T2 |
| 73 | 1+(4.09−7.10i)T+(−36.5−63.2i)T2 |
| 79 | 1+(5.70+9.88i)T+(−39.5+68.4i)T2 |
| 83 | 1+(2.77−4.79i)T+(−41.5−71.8i)T2 |
| 89 | 1+(4.48+7.76i)T+(−44.5+77.0i)T2 |
| 97 | 1+(3.43+5.94i)T+(−48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.14626090537871023743015127011, −9.667694441241046823229402917963, −8.560322336303508901088171856978, −7.71492172743610996736249665567, −6.67563433049463548615798224008, −5.50216074994540392922269653028, −4.89211453342603558962411754844, −3.70318661592580024131849984954, −2.73275068356261620783521161849, −0.15036194332776219697060408211,
1.26216060605804121714939882419, 3.24076092912795527119664760624, 4.06007225616521542944856898926, 5.41459274234205605577551542564, 6.44532378597224373293675327304, 7.07120807693670211844046121351, 8.135555735470160378796431540586, 8.511593728947381032890867110032, 10.17401362077193193015993888724, 10.84979824646347076765435118927