Properties

Label 684.2.l.a.277.6
Level $684$
Weight $2$
Character 684.277
Analytic conductor $5.462$
Analytic rank $0$
Dimension $40$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [684,2,Mod(121,684)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(684, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("684.121");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 684 = 2^{2} \cdot 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 684.l (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.46176749826\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(20\) over \(\Q(\zeta_{3})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 277.6
Character \(\chi\) \(=\) 684.277
Dual form 684.2.l.a.121.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.04626 + 1.38034i) q^{3} -2.40565 q^{5} +(-1.53172 + 2.65301i) q^{7} +(-0.810664 - 2.88839i) q^{9} +(-2.96810 + 5.14089i) q^{11} +(2.81967 - 4.88381i) q^{13} +(2.51694 - 3.32060i) q^{15} +(1.15507 - 2.00063i) q^{17} +(1.16718 - 4.19973i) q^{19} +(-2.05947 - 4.89004i) q^{21} +(-0.654760 + 1.13408i) q^{23} +0.787132 q^{25} +(4.83513 + 1.90303i) q^{27} +6.77137 q^{29} +(-4.86166 - 8.42064i) q^{31} +(-3.99076 - 9.47571i) q^{33} +(3.68477 - 6.38221i) q^{35} -2.91406 q^{37} +(3.79119 + 9.00185i) q^{39} -3.91785 q^{41} +(-0.0602912 - 0.104427i) q^{43} +(1.95017 + 6.94845i) q^{45} -10.0218 q^{47} +(-1.19232 - 2.06516i) q^{49} +(1.55305 + 3.68757i) q^{51} +(-4.85905 - 8.41612i) q^{53} +(7.14019 - 12.3672i) q^{55} +(4.57586 + 6.00512i) q^{57} +8.36293 q^{59} +9.94221 q^{61} +(8.90466 + 2.27350i) q^{63} +(-6.78312 + 11.7487i) q^{65} +(5.03862 - 8.72714i) q^{67} +(-0.880358 - 2.09033i) q^{69} +(-1.00262 + 1.73659i) q^{71} +(-4.09931 + 7.10022i) q^{73} +(-0.823547 + 1.08651i) q^{75} +(-9.09258 - 15.7488i) q^{77} +(-5.70591 - 9.88293i) q^{79} +(-7.68565 + 4.68303i) q^{81} +(-2.77092 + 4.79938i) q^{83} +(-2.77868 + 4.81282i) q^{85} +(-7.08464 + 9.34678i) q^{87} +(-4.48313 - 7.76501i) q^{89} +(8.63788 + 14.9612i) q^{91} +(16.7099 + 2.09948i) q^{93} +(-2.80781 + 10.1031i) q^{95} +(-3.43051 - 5.94182i) q^{97} +(17.2551 + 4.40550i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q + q^{3} - q^{7} + q^{9} - q^{11} - q^{13} + 10 q^{15} + 5 q^{17} + q^{19} + 6 q^{21} - 4 q^{23} + 40 q^{25} + 7 q^{27} + 18 q^{29} + 2 q^{31} - 7 q^{33} - 6 q^{35} + 2 q^{37} + 3 q^{39} + 50 q^{41}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/684\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(343\) \(533\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.04626 + 1.38034i −0.604061 + 0.796938i
\(4\) 0 0
\(5\) −2.40565 −1.07584 −0.537919 0.842997i \(-0.680789\pi\)
−0.537919 + 0.842997i \(0.680789\pi\)
\(6\) 0 0
\(7\) −1.53172 + 2.65301i −0.578935 + 1.00275i 0.416667 + 0.909059i \(0.363198\pi\)
−0.995602 + 0.0936857i \(0.970135\pi\)
\(8\) 0 0
\(9\) −0.810664 2.88839i −0.270221 0.962798i
\(10\) 0 0
\(11\) −2.96810 + 5.14089i −0.894915 + 1.55004i −0.0610046 + 0.998137i \(0.519430\pi\)
−0.833910 + 0.551900i \(0.813903\pi\)
\(12\) 0 0
\(13\) 2.81967 4.88381i 0.782035 1.35453i −0.148719 0.988880i \(-0.547515\pi\)
0.930754 0.365646i \(-0.119152\pi\)
\(14\) 0 0
\(15\) 2.51694 3.32060i 0.649871 0.857376i
\(16\) 0 0
\(17\) 1.15507 2.00063i 0.280145 0.485225i −0.691275 0.722591i \(-0.742951\pi\)
0.971420 + 0.237366i \(0.0762841\pi\)
\(18\) 0 0
\(19\) 1.16718 4.19973i 0.267769 0.963483i
\(20\) 0 0
\(21\) −2.05947 4.89004i −0.449414 1.06709i
\(22\) 0 0
\(23\) −0.654760 + 1.13408i −0.136527 + 0.236472i −0.926180 0.377082i \(-0.876927\pi\)
0.789653 + 0.613554i \(0.210261\pi\)
\(24\) 0 0
\(25\) 0.787132 0.157426
\(26\) 0 0
\(27\) 4.83513 + 1.90303i 0.930521 + 0.366239i
\(28\) 0 0
\(29\) 6.77137 1.25741 0.628706 0.777643i \(-0.283585\pi\)
0.628706 + 0.777643i \(0.283585\pi\)
\(30\) 0 0
\(31\) −4.86166 8.42064i −0.873179 1.51239i −0.858690 0.512496i \(-0.828721\pi\)
−0.0144895 0.999895i \(-0.504612\pi\)
\(32\) 0 0
\(33\) −3.99076 9.47571i −0.694702 1.64951i
\(34\) 0 0
\(35\) 3.68477 6.38221i 0.622840 1.07879i
\(36\) 0 0
\(37\) −2.91406 −0.479068 −0.239534 0.970888i \(-0.576995\pi\)
−0.239534 + 0.970888i \(0.576995\pi\)
\(38\) 0 0
\(39\) 3.79119 + 9.00185i 0.607076 + 1.44145i
\(40\) 0 0
\(41\) −3.91785 −0.611866 −0.305933 0.952053i \(-0.598968\pi\)
−0.305933 + 0.952053i \(0.598968\pi\)
\(42\) 0 0
\(43\) −0.0602912 0.104427i −0.00919432 0.0159250i 0.861392 0.507941i \(-0.169593\pi\)
−0.870586 + 0.492016i \(0.836260\pi\)
\(44\) 0 0
\(45\) 1.95017 + 6.94845i 0.290714 + 1.03581i
\(46\) 0 0
\(47\) −10.0218 −1.46184 −0.730918 0.682466i \(-0.760908\pi\)
−0.730918 + 0.682466i \(0.760908\pi\)
\(48\) 0 0
\(49\) −1.19232 2.06516i −0.170332 0.295023i
\(50\) 0 0
\(51\) 1.55305 + 3.68757i 0.217470 + 0.516364i
\(52\) 0 0
\(53\) −4.85905 8.41612i −0.667442 1.15604i −0.978617 0.205690i \(-0.934056\pi\)
0.311176 0.950352i \(-0.399277\pi\)
\(54\) 0 0
\(55\) 7.14019 12.3672i 0.962783 1.66759i
\(56\) 0 0
\(57\) 4.57586 + 6.00512i 0.606088 + 0.795398i
\(58\) 0 0
\(59\) 8.36293 1.08876 0.544381 0.838838i \(-0.316765\pi\)
0.544381 + 0.838838i \(0.316765\pi\)
\(60\) 0 0
\(61\) 9.94221 1.27297 0.636485 0.771289i \(-0.280388\pi\)
0.636485 + 0.771289i \(0.280388\pi\)
\(62\) 0 0
\(63\) 8.90466 + 2.27350i 1.12188 + 0.286435i
\(64\) 0 0
\(65\) −6.78312 + 11.7487i −0.841343 + 1.45725i
\(66\) 0 0
\(67\) 5.03862 8.72714i 0.615565 1.06619i −0.374720 0.927138i \(-0.622261\pi\)
0.990285 0.139052i \(-0.0444055\pi\)
\(68\) 0 0
\(69\) −0.880358 2.09033i −0.105983 0.251647i
\(70\) 0 0
\(71\) −1.00262 + 1.73659i −0.118989 + 0.206095i −0.919367 0.393400i \(-0.871299\pi\)
0.800378 + 0.599495i \(0.204632\pi\)
\(72\) 0 0
\(73\) −4.09931 + 7.10022i −0.479788 + 0.831018i −0.999731 0.0231832i \(-0.992620\pi\)
0.519943 + 0.854201i \(0.325953\pi\)
\(74\) 0 0
\(75\) −0.823547 + 1.08651i −0.0950951 + 0.125459i
\(76\) 0 0
\(77\) −9.09258 15.7488i −1.03620 1.79474i
\(78\) 0 0
\(79\) −5.70591 9.88293i −0.641965 1.11192i −0.984994 0.172591i \(-0.944786\pi\)
0.343028 0.939325i \(-0.388547\pi\)
\(80\) 0 0
\(81\) −7.68565 + 4.68303i −0.853961 + 0.520337i
\(82\) 0 0
\(83\) −2.77092 + 4.79938i −0.304148 + 0.526800i −0.977071 0.212912i \(-0.931705\pi\)
0.672923 + 0.739712i \(0.265038\pi\)
\(84\) 0 0
\(85\) −2.77868 + 4.81282i −0.301390 + 0.522023i
\(86\) 0 0
\(87\) −7.08464 + 9.34678i −0.759553 + 1.00208i
\(88\) 0 0
\(89\) −4.48313 7.76501i −0.475211 0.823089i 0.524386 0.851481i \(-0.324295\pi\)
−0.999597 + 0.0283913i \(0.990962\pi\)
\(90\) 0 0
\(91\) 8.63788 + 14.9612i 0.905496 + 1.56836i
\(92\) 0 0
\(93\) 16.7099 + 2.09948i 1.73274 + 0.217706i
\(94\) 0 0
\(95\) −2.80781 + 10.1031i −0.288076 + 1.03655i
\(96\) 0 0
\(97\) −3.43051 5.94182i −0.348316 0.603301i 0.637635 0.770339i \(-0.279913\pi\)
−0.985950 + 0.167038i \(0.946580\pi\)
\(98\) 0 0
\(99\) 17.2551 + 4.40550i 1.73420 + 0.442769i
\(100\) 0 0
\(101\) −6.49379 −0.646157 −0.323078 0.946372i \(-0.604718\pi\)
−0.323078 + 0.946372i \(0.604718\pi\)
\(102\) 0 0
\(103\) 4.46179 + 7.72805i 0.439634 + 0.761468i 0.997661 0.0683548i \(-0.0217750\pi\)
−0.558028 + 0.829822i \(0.688442\pi\)
\(104\) 0 0
\(105\) 4.95436 + 11.7637i 0.483496 + 1.14802i
\(106\) 0 0
\(107\) −13.2084 −1.27690 −0.638451 0.769662i \(-0.720425\pi\)
−0.638451 + 0.769662i \(0.720425\pi\)
\(108\) 0 0
\(109\) −6.42890 + 11.1352i −0.615777 + 1.06656i 0.374471 + 0.927239i \(0.377824\pi\)
−0.990248 + 0.139318i \(0.955509\pi\)
\(110\) 0 0
\(111\) 3.04887 4.02238i 0.289386 0.381788i
\(112\) 0 0
\(113\) 2.97088 + 5.14571i 0.279477 + 0.484068i 0.971255 0.238042i \(-0.0765057\pi\)
−0.691778 + 0.722110i \(0.743172\pi\)
\(114\) 0 0
\(115\) 1.57512 2.72819i 0.146881 0.254405i
\(116\) 0 0
\(117\) −16.3922 4.18519i −1.51546 0.386921i
\(118\) 0 0
\(119\) 3.53847 + 6.12882i 0.324371 + 0.561828i
\(120\) 0 0
\(121\) −12.1192 20.9911i −1.10174 1.90828i
\(122\) 0 0
\(123\) 4.09911 5.40796i 0.369604 0.487619i
\(124\) 0 0
\(125\) 10.1347 0.906472
\(126\) 0 0
\(127\) −1.27031 2.20024i −0.112722 0.195240i 0.804145 0.594433i \(-0.202624\pi\)
−0.916867 + 0.399193i \(0.869290\pi\)
\(128\) 0 0
\(129\) 0.207226 + 0.0260364i 0.0182452 + 0.00229238i
\(130\) 0 0
\(131\) −5.23943 −0.457771 −0.228886 0.973453i \(-0.573508\pi\)
−0.228886 + 0.973453i \(0.573508\pi\)
\(132\) 0 0
\(133\) 9.35415 + 9.52933i 0.811107 + 0.826298i
\(134\) 0 0
\(135\) −11.6316 4.57802i −1.00109 0.394014i
\(136\) 0 0
\(137\) −15.7623 −1.34667 −0.673333 0.739339i \(-0.735138\pi\)
−0.673333 + 0.739339i \(0.735138\pi\)
\(138\) 0 0
\(139\) −4.62283 + 8.00698i −0.392104 + 0.679144i −0.992727 0.120389i \(-0.961586\pi\)
0.600623 + 0.799532i \(0.294919\pi\)
\(140\) 0 0
\(141\) 10.4855 13.8335i 0.883037 1.16499i
\(142\) 0 0
\(143\) 16.7381 + 28.9912i 1.39971 + 2.42437i
\(144\) 0 0
\(145\) −16.2895 −1.35277
\(146\) 0 0
\(147\) 4.09811 + 0.514898i 0.338006 + 0.0424681i
\(148\) 0 0
\(149\) −4.19966 −0.344049 −0.172025 0.985093i \(-0.555031\pi\)
−0.172025 + 0.985093i \(0.555031\pi\)
\(150\) 0 0
\(151\) 0.904477 1.56660i 0.0736053 0.127488i −0.826874 0.562388i \(-0.809883\pi\)
0.900479 + 0.434900i \(0.143216\pi\)
\(152\) 0 0
\(153\) −6.71499 1.71445i −0.542875 0.138605i
\(154\) 0 0
\(155\) 11.6954 + 20.2571i 0.939399 + 1.62709i
\(156\) 0 0
\(157\) 16.9966 1.35648 0.678240 0.734840i \(-0.262743\pi\)
0.678240 + 0.734840i \(0.262743\pi\)
\(158\) 0 0
\(159\) 16.7009 + 2.09835i 1.32447 + 0.166410i
\(160\) 0 0
\(161\) −2.00582 3.47417i −0.158080 0.273803i
\(162\) 0 0
\(163\) −21.5075 −1.68459 −0.842297 0.539013i \(-0.818797\pi\)
−0.842297 + 0.539013i \(0.818797\pi\)
\(164\) 0 0
\(165\) 9.60035 + 22.7952i 0.747386 + 1.77460i
\(166\) 0 0
\(167\) 1.64867 2.85559i 0.127578 0.220972i −0.795160 0.606400i \(-0.792613\pi\)
0.922738 + 0.385428i \(0.125946\pi\)
\(168\) 0 0
\(169\) −9.40106 16.2831i −0.723159 1.25255i
\(170\) 0 0
\(171\) −13.0767 + 0.0332986i −0.999997 + 0.00254641i
\(172\) 0 0
\(173\) −6.99902 12.1227i −0.532126 0.921669i −0.999297 0.0375018i \(-0.988060\pi\)
0.467171 0.884167i \(-0.345273\pi\)
\(174\) 0 0
\(175\) −1.20566 + 2.08827i −0.0911396 + 0.157858i
\(176\) 0 0
\(177\) −8.74984 + 11.5437i −0.657678 + 0.867676i
\(178\) 0 0
\(179\) 8.09027 0.604695 0.302348 0.953198i \(-0.402230\pi\)
0.302348 + 0.953198i \(0.402230\pi\)
\(180\) 0 0
\(181\) 3.30463 + 5.72378i 0.245631 + 0.425446i 0.962309 0.271959i \(-0.0876715\pi\)
−0.716678 + 0.697404i \(0.754338\pi\)
\(182\) 0 0
\(183\) −10.4022 + 13.7236i −0.768951 + 1.01448i
\(184\) 0 0
\(185\) 7.01019 0.515399
\(186\) 0 0
\(187\) 6.85670 + 11.8762i 0.501412 + 0.868470i
\(188\) 0 0
\(189\) −12.4548 + 9.91275i −0.905955 + 0.721047i
\(190\) 0 0
\(191\) 9.09541 15.7537i 0.658121 1.13990i −0.322981 0.946406i \(-0.604685\pi\)
0.981102 0.193493i \(-0.0619818\pi\)
\(192\) 0 0
\(193\) −8.59739 −0.618853 −0.309427 0.950923i \(-0.600137\pi\)
−0.309427 + 0.950923i \(0.600137\pi\)
\(194\) 0 0
\(195\) −9.12026 21.6553i −0.653115 1.55077i
\(196\) 0 0
\(197\) 2.67567 0.190634 0.0953169 0.995447i \(-0.469614\pi\)
0.0953169 + 0.995447i \(0.469614\pi\)
\(198\) 0 0
\(199\) −12.4456 21.5564i −0.882245 1.52809i −0.848839 0.528652i \(-0.822698\pi\)
−0.0334064 0.999442i \(-0.510636\pi\)
\(200\) 0 0
\(201\) 6.77468 + 16.0859i 0.477849 + 1.13461i
\(202\) 0 0
\(203\) −10.3718 + 17.9645i −0.727960 + 1.26086i
\(204\) 0 0
\(205\) 9.42496 0.658268
\(206\) 0 0
\(207\) 3.80645 + 0.971849i 0.264567 + 0.0675482i
\(208\) 0 0
\(209\) 18.1261 + 18.4655i 1.25381 + 1.27729i
\(210\) 0 0
\(211\) 12.9210 0.889517 0.444758 0.895651i \(-0.353290\pi\)
0.444758 + 0.895651i \(0.353290\pi\)
\(212\) 0 0
\(213\) −1.34807 3.20088i −0.0923684 0.219321i
\(214\) 0 0
\(215\) 0.145039 + 0.251215i 0.00989160 + 0.0171327i
\(216\) 0 0
\(217\) 29.7868 2.02206
\(218\) 0 0
\(219\) −5.51174 13.0871i −0.372449 0.884347i
\(220\) 0 0
\(221\) −6.51381 11.2823i −0.438166 0.758927i
\(222\) 0 0
\(223\) 9.89723 + 17.1425i 0.662768 + 1.14795i 0.979885 + 0.199561i \(0.0639516\pi\)
−0.317118 + 0.948386i \(0.602715\pi\)
\(224\) 0 0
\(225\) −0.638099 2.27355i −0.0425400 0.151570i
\(226\) 0 0
\(227\) 1.14847 1.98921i 0.0762267 0.132029i −0.825392 0.564560i \(-0.809046\pi\)
0.901619 + 0.432531i \(0.142379\pi\)
\(228\) 0 0
\(229\) 3.81796 + 6.61291i 0.252298 + 0.436993i 0.964158 0.265328i \(-0.0854803\pi\)
−0.711860 + 0.702321i \(0.752147\pi\)
\(230\) 0 0
\(231\) 31.2519 + 3.92658i 2.05622 + 0.258350i
\(232\) 0 0
\(233\) −6.62451 + 11.4740i −0.433986 + 0.751686i −0.997212 0.0746170i \(-0.976227\pi\)
0.563226 + 0.826303i \(0.309560\pi\)
\(234\) 0 0
\(235\) 24.1090 1.57270
\(236\) 0 0
\(237\) 19.6117 + 2.46407i 1.27391 + 0.160058i
\(238\) 0 0
\(239\) −10.3828 17.9835i −0.671606 1.16326i −0.977449 0.211174i \(-0.932271\pi\)
0.305843 0.952082i \(-0.401062\pi\)
\(240\) 0 0
\(241\) 7.53358 0.485281 0.242640 0.970116i \(-0.421987\pi\)
0.242640 + 0.970116i \(0.421987\pi\)
\(242\) 0 0
\(243\) 1.57705 15.5085i 0.101168 0.994869i
\(244\) 0 0
\(245\) 2.86830 + 4.96805i 0.183249 + 0.317397i
\(246\) 0 0
\(247\) −17.2196 17.5421i −1.09566 1.11618i
\(248\) 0 0
\(249\) −3.72565 8.84622i −0.236103 0.560607i
\(250\) 0 0
\(251\) −11.4643 19.8567i −0.723620 1.25335i −0.959540 0.281574i \(-0.909144\pi\)
0.235920 0.971773i \(-0.424190\pi\)
\(252\) 0 0
\(253\) −3.88678 6.73210i −0.244360 0.423244i
\(254\) 0 0
\(255\) −3.73608 8.87100i −0.233962 0.555523i
\(256\) 0 0
\(257\) −14.6036 + 25.2941i −0.910945 + 1.57780i −0.0982122 + 0.995165i \(0.531312\pi\)
−0.812732 + 0.582637i \(0.802021\pi\)
\(258\) 0 0
\(259\) 4.46351 7.73103i 0.277349 0.480383i
\(260\) 0 0
\(261\) −5.48931 19.5584i −0.339780 1.21063i
\(262\) 0 0
\(263\) 1.39551 + 2.41710i 0.0860510 + 0.149045i 0.905839 0.423623i \(-0.139242\pi\)
−0.819788 + 0.572668i \(0.805909\pi\)
\(264\) 0 0
\(265\) 11.6891 + 20.2462i 0.718059 + 1.24371i
\(266\) 0 0
\(267\) 15.4089 + 1.93602i 0.943008 + 0.118482i
\(268\) 0 0
\(269\) 14.0669 24.3646i 0.857674 1.48553i −0.0164688 0.999864i \(-0.505242\pi\)
0.874142 0.485670i \(-0.161424\pi\)
\(270\) 0 0
\(271\) 10.5055 18.1960i 0.638161 1.10533i −0.347675 0.937615i \(-0.613029\pi\)
0.985836 0.167712i \(-0.0536380\pi\)
\(272\) 0 0
\(273\) −29.6891 3.73022i −1.79686 0.225763i
\(274\) 0 0
\(275\) −2.33628 + 4.04656i −0.140883 + 0.244017i
\(276\) 0 0
\(277\) 3.31964 5.74979i 0.199458 0.345471i −0.748895 0.662689i \(-0.769415\pi\)
0.948353 + 0.317217i \(0.102749\pi\)
\(278\) 0 0
\(279\) −20.3809 + 20.8687i −1.22018 + 1.24938i
\(280\) 0 0
\(281\) −4.37245 −0.260839 −0.130419 0.991459i \(-0.541632\pi\)
−0.130419 + 0.991459i \(0.541632\pi\)
\(282\) 0 0
\(283\) −1.08030 −0.0642169 −0.0321085 0.999484i \(-0.510222\pi\)
−0.0321085 + 0.999484i \(0.510222\pi\)
\(284\) 0 0
\(285\) −11.0079 14.4462i −0.652052 0.855718i
\(286\) 0 0
\(287\) 6.00105 10.3941i 0.354231 0.613545i
\(288\) 0 0
\(289\) 5.83164 + 10.1007i 0.343038 + 0.594159i
\(290\) 0 0
\(291\) 11.7909 + 1.48145i 0.691197 + 0.0868440i
\(292\) 0 0
\(293\) −1.97495 3.42072i −0.115378 0.199840i 0.802553 0.596581i \(-0.203475\pi\)
−0.917931 + 0.396741i \(0.870141\pi\)
\(294\) 0 0
\(295\) −20.1183 −1.17133
\(296\) 0 0
\(297\) −24.1344 + 19.2085i −1.40042 + 1.11459i
\(298\) 0 0
\(299\) 3.69241 + 6.39545i 0.213538 + 0.369858i
\(300\) 0 0
\(301\) 0.369397 0.0212917
\(302\) 0 0
\(303\) 6.79422 8.96363i 0.390318 0.514947i
\(304\) 0 0
\(305\) −23.9174 −1.36951
\(306\) 0 0
\(307\) −9.58836 + 16.6075i −0.547237 + 0.947842i 0.451226 + 0.892410i \(0.350987\pi\)
−0.998462 + 0.0554320i \(0.982346\pi\)
\(308\) 0 0
\(309\) −15.3355 1.92680i −0.872408 0.109612i
\(310\) 0 0
\(311\) −12.1904 21.1144i −0.691255 1.19729i −0.971427 0.237338i \(-0.923725\pi\)
0.280173 0.959950i \(-0.409608\pi\)
\(312\) 0 0
\(313\) −12.6505 −0.715051 −0.357526 0.933903i \(-0.616380\pi\)
−0.357526 + 0.933903i \(0.616380\pi\)
\(314\) 0 0
\(315\) −21.4215 5.46925i −1.20696 0.308157i
\(316\) 0 0
\(317\) −11.6315 −0.653288 −0.326644 0.945147i \(-0.605918\pi\)
−0.326644 + 0.945147i \(0.605918\pi\)
\(318\) 0 0
\(319\) −20.0981 + 34.8109i −1.12528 + 1.94904i
\(320\) 0 0
\(321\) 13.8195 18.2320i 0.771327 1.01761i
\(322\) 0 0
\(323\) −7.05395 7.18606i −0.392492 0.399843i
\(324\) 0 0
\(325\) 2.21945 3.84420i 0.123113 0.213238i
\(326\) 0 0
\(327\) −8.64398 20.5244i −0.478013 1.13500i
\(328\) 0 0
\(329\) 15.3506 26.5881i 0.846308 1.46585i
\(330\) 0 0
\(331\) 6.72638 11.6504i 0.369715 0.640366i −0.619805 0.784755i \(-0.712789\pi\)
0.989521 + 0.144390i \(0.0461218\pi\)
\(332\) 0 0
\(333\) 2.36232 + 8.41694i 0.129454 + 0.461246i
\(334\) 0 0
\(335\) −12.1211 + 20.9944i −0.662248 + 1.14705i
\(336\) 0 0
\(337\) 8.29518 0.451867 0.225934 0.974143i \(-0.427457\pi\)
0.225934 + 0.974143i \(0.427457\pi\)
\(338\) 0 0
\(339\) −10.2111 1.28296i −0.554593 0.0696807i
\(340\) 0 0
\(341\) 57.7195 3.12568
\(342\) 0 0
\(343\) −14.1388 −0.763426
\(344\) 0 0
\(345\) 2.11783 + 5.02860i 0.114020 + 0.270731i
\(346\) 0 0
\(347\) −4.99351 −0.268066 −0.134033 0.990977i \(-0.542793\pi\)
−0.134033 + 0.990977i \(0.542793\pi\)
\(348\) 0 0
\(349\) −5.53573 + 9.58817i −0.296321 + 0.513243i −0.975291 0.220923i \(-0.929093\pi\)
0.678970 + 0.734166i \(0.262426\pi\)
\(350\) 0 0
\(351\) 22.9275 18.2479i 1.22378 0.974002i
\(352\) 0 0
\(353\) 3.35029 5.80288i 0.178318 0.308856i −0.762986 0.646414i \(-0.776268\pi\)
0.941305 + 0.337558i \(0.109601\pi\)
\(354\) 0 0
\(355\) 2.41195 4.17761i 0.128013 0.221725i
\(356\) 0 0
\(357\) −12.1620 1.52807i −0.643682 0.0808741i
\(358\) 0 0
\(359\) 7.16145 12.4040i 0.377967 0.654658i −0.612799 0.790238i \(-0.709957\pi\)
0.990766 + 0.135581i \(0.0432900\pi\)
\(360\) 0 0
\(361\) −16.2754 9.80365i −0.856600 0.515981i
\(362\) 0 0
\(363\) 41.6546 + 5.23361i 2.18630 + 0.274693i
\(364\) 0 0
\(365\) 9.86150 17.0806i 0.516174 0.894040i
\(366\) 0 0
\(367\) −1.07940 −0.0563442 −0.0281721 0.999603i \(-0.508969\pi\)
−0.0281721 + 0.999603i \(0.508969\pi\)
\(368\) 0 0
\(369\) 3.17606 + 11.3163i 0.165339 + 0.589103i
\(370\) 0 0
\(371\) 29.7708 1.54562
\(372\) 0 0
\(373\) −4.47156 7.74497i −0.231529 0.401019i 0.726730 0.686924i \(-0.241039\pi\)
−0.958258 + 0.285904i \(0.907706\pi\)
\(374\) 0 0
\(375\) −10.6035 + 13.9893i −0.547564 + 0.722403i
\(376\) 0 0
\(377\) 19.0930 33.0701i 0.983341 1.70320i
\(378\) 0 0
\(379\) −20.9577 −1.07653 −0.538263 0.842777i \(-0.680919\pi\)
−0.538263 + 0.842777i \(0.680919\pi\)
\(380\) 0 0
\(381\) 4.36616 + 0.548576i 0.223685 + 0.0281044i
\(382\) 0 0
\(383\) −5.92505 −0.302756 −0.151378 0.988476i \(-0.548371\pi\)
−0.151378 + 0.988476i \(0.548371\pi\)
\(384\) 0 0
\(385\) 21.8735 + 37.8860i 1.11478 + 1.93085i
\(386\) 0 0
\(387\) −0.252752 + 0.258800i −0.0128481 + 0.0131556i
\(388\) 0 0
\(389\) 24.6128 1.24792 0.623959 0.781457i \(-0.285523\pi\)
0.623959 + 0.781457i \(0.285523\pi\)
\(390\) 0 0
\(391\) 1.51258 + 2.61987i 0.0764946 + 0.132493i
\(392\) 0 0
\(393\) 5.48183 7.23218i 0.276522 0.364815i
\(394\) 0 0
\(395\) 13.7264 + 23.7748i 0.690650 + 1.19624i
\(396\) 0 0
\(397\) 4.02356 6.96901i 0.201937 0.349765i −0.747216 0.664582i \(-0.768610\pi\)
0.949152 + 0.314817i \(0.101943\pi\)
\(398\) 0 0
\(399\) −22.9406 + 2.94168i −1.14847 + 0.147268i
\(400\) 0 0
\(401\) 23.5206 1.17456 0.587281 0.809383i \(-0.300198\pi\)
0.587281 + 0.809383i \(0.300198\pi\)
\(402\) 0 0
\(403\) −54.8330 −2.73143
\(404\) 0 0
\(405\) 18.4889 11.2657i 0.918723 0.559798i
\(406\) 0 0
\(407\) 8.64920 14.9809i 0.428725 0.742573i
\(408\) 0 0
\(409\) 1.19951 2.07762i 0.0593121 0.102731i −0.834845 0.550485i \(-0.814443\pi\)
0.894157 + 0.447754i \(0.147776\pi\)
\(410\) 0 0
\(411\) 16.4915 21.7573i 0.813468 1.07321i
\(412\) 0 0
\(413\) −12.8097 + 22.1870i −0.630322 + 1.09175i
\(414\) 0 0
\(415\) 6.66586 11.5456i 0.327214 0.566751i
\(416\) 0 0
\(417\) −6.21564 14.7585i −0.304381 0.722726i
\(418\) 0 0
\(419\) 9.37939 + 16.2456i 0.458213 + 0.793648i 0.998867 0.0475971i \(-0.0151564\pi\)
−0.540654 + 0.841245i \(0.681823\pi\)
\(420\) 0 0
\(421\) −13.6967 23.7233i −0.667535 1.15620i −0.978591 0.205813i \(-0.934016\pi\)
0.311056 0.950392i \(-0.399317\pi\)
\(422\) 0 0
\(423\) 8.12434 + 28.9470i 0.395019 + 1.40745i
\(424\) 0 0
\(425\) 0.909190 1.57476i 0.0441022 0.0763872i
\(426\) 0 0
\(427\) −15.2287 + 26.3768i −0.736967 + 1.27646i
\(428\) 0 0
\(429\) −57.5302 7.22826i −2.77758 0.348983i
\(430\) 0 0
\(431\) 0.510575 + 0.884342i 0.0245935 + 0.0425972i 0.878060 0.478550i \(-0.158838\pi\)
−0.853467 + 0.521147i \(0.825504\pi\)
\(432\) 0 0
\(433\) −7.79908 13.5084i −0.374800 0.649172i 0.615497 0.788139i \(-0.288955\pi\)
−0.990297 + 0.138967i \(0.955622\pi\)
\(434\) 0 0
\(435\) 17.0431 22.4850i 0.817156 1.07808i
\(436\) 0 0
\(437\) 3.99859 + 4.07348i 0.191279 + 0.194861i
\(438\) 0 0
\(439\) −0.771383 1.33608i −0.0368161 0.0637674i 0.847030 0.531545i \(-0.178388\pi\)
−0.883846 + 0.467777i \(0.845055\pi\)
\(440\) 0 0
\(441\) −4.99843 + 5.11805i −0.238021 + 0.243717i
\(442\) 0 0
\(443\) −8.72562 −0.414567 −0.207283 0.978281i \(-0.566462\pi\)
−0.207283 + 0.978281i \(0.566462\pi\)
\(444\) 0 0
\(445\) 10.7848 + 18.6799i 0.511250 + 0.885510i
\(446\) 0 0
\(447\) 4.39395 5.79694i 0.207827 0.274186i
\(448\) 0 0
\(449\) −7.45439 −0.351794 −0.175897 0.984409i \(-0.556283\pi\)
−0.175897 + 0.984409i \(0.556283\pi\)
\(450\) 0 0
\(451\) 11.6286 20.1413i 0.547568 0.948415i
\(452\) 0 0
\(453\) 1.21612 + 2.88756i 0.0571381 + 0.135669i
\(454\) 0 0
\(455\) −20.7797 35.9914i −0.974166 1.68731i
\(456\) 0 0
\(457\) −14.9187 + 25.8399i −0.697867 + 1.20874i 0.271338 + 0.962484i \(0.412534\pi\)
−0.969205 + 0.246257i \(0.920799\pi\)
\(458\) 0 0
\(459\) 9.39217 7.47520i 0.438389 0.348912i
\(460\) 0 0
\(461\) −8.48128 14.6900i −0.395013 0.684182i 0.598090 0.801429i \(-0.295926\pi\)
−0.993103 + 0.117247i \(0.962593\pi\)
\(462\) 0 0
\(463\) 18.9367 + 32.7993i 0.880063 + 1.52431i 0.851270 + 0.524728i \(0.175833\pi\)
0.0287929 + 0.999585i \(0.490834\pi\)
\(464\) 0 0
\(465\) −40.1981 5.05060i −1.86414 0.234216i
\(466\) 0 0
\(467\) 36.8780 1.70651 0.853255 0.521494i \(-0.174625\pi\)
0.853255 + 0.521494i \(0.174625\pi\)
\(468\) 0 0
\(469\) 15.4355 + 26.7350i 0.712744 + 1.23451i
\(470\) 0 0
\(471\) −17.7830 + 23.4611i −0.819396 + 1.08103i
\(472\) 0 0
\(473\) 0.715800 0.0329125
\(474\) 0 0
\(475\) 0.918722 3.30574i 0.0421539 0.151678i
\(476\) 0 0
\(477\) −20.3700 + 20.8575i −0.932679 + 0.954999i
\(478\) 0 0
\(479\) 4.33345 0.198000 0.0990001 0.995087i \(-0.468436\pi\)
0.0990001 + 0.995087i \(0.468436\pi\)
\(480\) 0 0
\(481\) −8.21667 + 14.2317i −0.374648 + 0.648909i
\(482\) 0 0
\(483\) 6.89415 + 0.866200i 0.313695 + 0.0394135i
\(484\) 0 0
\(485\) 8.25260 + 14.2939i 0.374731 + 0.649053i
\(486\) 0 0
\(487\) −9.69069 −0.439127 −0.219563 0.975598i \(-0.570463\pi\)
−0.219563 + 0.975598i \(0.570463\pi\)
\(488\) 0 0
\(489\) 22.5025 29.6876i 1.01760 1.34252i
\(490\) 0 0
\(491\) −37.9721 −1.71365 −0.856827 0.515603i \(-0.827568\pi\)
−0.856827 + 0.515603i \(0.827568\pi\)
\(492\) 0 0
\(493\) 7.82139 13.5470i 0.352258 0.610128i
\(494\) 0 0
\(495\) −41.5096 10.5981i −1.86572 0.476348i
\(496\) 0 0
\(497\) −3.07146 5.31993i −0.137774 0.238631i
\(498\) 0 0
\(499\) −28.5012 −1.27589 −0.637944 0.770083i \(-0.720215\pi\)
−0.637944 + 0.770083i \(0.720215\pi\)
\(500\) 0 0
\(501\) 2.21673 + 5.26342i 0.0990360 + 0.235152i
\(502\) 0 0
\(503\) 2.47407 + 4.28522i 0.110314 + 0.191069i 0.915897 0.401414i \(-0.131481\pi\)
−0.805583 + 0.592483i \(0.798148\pi\)
\(504\) 0 0
\(505\) 15.6218 0.695159
\(506\) 0 0
\(507\) 32.3122 + 4.05980i 1.43503 + 0.180302i
\(508\) 0 0
\(509\) 2.82795 4.89816i 0.125347 0.217107i −0.796522 0.604610i \(-0.793329\pi\)
0.921868 + 0.387503i \(0.126662\pi\)
\(510\) 0 0
\(511\) −12.5580 21.7511i −0.555533 0.962211i
\(512\) 0 0
\(513\) 13.6357 18.0850i 0.602029 0.798474i
\(514\) 0 0
\(515\) −10.7335 18.5910i −0.472974 0.819215i
\(516\) 0 0
\(517\) 29.7458 51.5212i 1.30822 2.26590i
\(518\) 0 0
\(519\) 24.0562 + 3.02249i 1.05595 + 0.132673i
\(520\) 0 0
\(521\) 35.3278 1.54774 0.773869 0.633345i \(-0.218319\pi\)
0.773869 + 0.633345i \(0.218319\pi\)
\(522\) 0 0
\(523\) 21.1307 + 36.5994i 0.923980 + 1.60038i 0.793193 + 0.608970i \(0.208417\pi\)
0.130787 + 0.991410i \(0.458250\pi\)
\(524\) 0 0
\(525\) −1.62108 3.84911i −0.0707496 0.167989i
\(526\) 0 0
\(527\) −22.4622 −0.978467
\(528\) 0 0
\(529\) 10.6426 + 18.4335i 0.462721 + 0.801456i
\(530\) 0 0
\(531\) −6.77953 24.1555i −0.294207 1.04826i
\(532\) 0 0
\(533\) −11.0470 + 19.1340i −0.478501 + 0.828787i
\(534\) 0 0
\(535\) 31.7747 1.37374
\(536\) 0 0
\(537\) −8.46456 + 11.1673i −0.365273 + 0.481905i
\(538\) 0 0
\(539\) 14.1557 0.609730
\(540\) 0 0
\(541\) 21.6732 + 37.5391i 0.931804 + 1.61393i 0.780237 + 0.625484i \(0.215099\pi\)
0.151567 + 0.988447i \(0.451568\pi\)
\(542\) 0 0
\(543\) −11.3583 1.42709i −0.487430 0.0612421i
\(544\) 0 0
\(545\) 15.4656 26.7873i 0.662476 1.14744i
\(546\) 0 0
\(547\) −27.6688 −1.18303 −0.591516 0.806293i \(-0.701470\pi\)
−0.591516 + 0.806293i \(0.701470\pi\)
\(548\) 0 0
\(549\) −8.05979 28.7170i −0.343984 1.22561i
\(550\) 0 0
\(551\) 7.90339 28.4379i 0.336696 1.21150i
\(552\) 0 0
\(553\) 34.9594 1.48662
\(554\) 0 0
\(555\) −7.33450 + 9.67642i −0.311332 + 0.410741i
\(556\) 0 0
\(557\) −4.91182 8.50752i −0.208120 0.360475i 0.743002 0.669289i \(-0.233401\pi\)
−0.951122 + 0.308814i \(0.900068\pi\)
\(558\) 0 0
\(559\) −0.680005 −0.0287611
\(560\) 0 0
\(561\) −23.5670 2.96103i −0.995000 0.125015i
\(562\) 0 0
\(563\) 17.6935 + 30.6460i 0.745692 + 1.29158i 0.949871 + 0.312643i \(0.101214\pi\)
−0.204178 + 0.978934i \(0.565452\pi\)
\(564\) 0 0
\(565\) −7.14688 12.3788i −0.300671 0.520778i
\(566\) 0 0
\(567\) −0.651909 27.5632i −0.0273776 1.15755i
\(568\) 0 0
\(569\) −13.8420 + 23.9751i −0.580287 + 1.00509i 0.415158 + 0.909749i \(0.363726\pi\)
−0.995445 + 0.0953373i \(0.969607\pi\)
\(570\) 0 0
\(571\) 13.5265 + 23.4286i 0.566068 + 0.980458i 0.996949 + 0.0780495i \(0.0248692\pi\)
−0.430882 + 0.902408i \(0.641797\pi\)
\(572\) 0 0
\(573\) 12.2292 + 29.0373i 0.510884 + 1.21305i
\(574\) 0 0
\(575\) −0.515382 + 0.892668i −0.0214929 + 0.0372268i
\(576\) 0 0
\(577\) 8.38351 0.349010 0.174505 0.984656i \(-0.444167\pi\)
0.174505 + 0.984656i \(0.444167\pi\)
\(578\) 0 0
\(579\) 8.99513 11.8673i 0.373825 0.493188i
\(580\) 0 0
\(581\) −8.48854 14.7026i −0.352164 0.609966i
\(582\) 0 0
\(583\) 57.6885 2.38921
\(584\) 0 0
\(585\) 39.4338 + 10.0681i 1.63039 + 0.416264i
\(586\) 0 0
\(587\) 19.0111 + 32.9282i 0.784672 + 1.35909i 0.929195 + 0.369591i \(0.120502\pi\)
−0.144522 + 0.989502i \(0.546165\pi\)
\(588\) 0 0
\(589\) −41.0388 + 10.5893i −1.69097 + 0.436323i
\(590\) 0 0
\(591\) −2.79946 + 3.69333i −0.115154 + 0.151923i
\(592\) 0 0
\(593\) −3.60681 6.24718i −0.148114 0.256541i 0.782416 0.622756i \(-0.213987\pi\)
−0.930530 + 0.366215i \(0.880654\pi\)
\(594\) 0 0
\(595\) −8.51232 14.7438i −0.348971 0.604435i
\(596\) 0 0
\(597\) 42.7765 + 5.37456i 1.75073 + 0.219966i
\(598\) 0 0
\(599\) −15.8137 + 27.3901i −0.646131 + 1.11913i 0.337909 + 0.941179i \(0.390281\pi\)
−0.984039 + 0.177952i \(0.943053\pi\)
\(600\) 0 0
\(601\) −3.66763 + 6.35252i −0.149606 + 0.259125i −0.931082 0.364811i \(-0.881134\pi\)
0.781476 + 0.623935i \(0.214467\pi\)
\(602\) 0 0
\(603\) −29.2921 7.47874i −1.19286 0.304558i
\(604\) 0 0
\(605\) 29.1545 + 50.4970i 1.18530 + 2.05300i
\(606\) 0 0
\(607\) −12.9317 22.3983i −0.524881 0.909120i −0.999580 0.0289720i \(-0.990777\pi\)
0.474700 0.880148i \(-0.342557\pi\)
\(608\) 0 0
\(609\) −13.9455 33.1123i −0.565099 1.34178i
\(610\) 0 0
\(611\) −28.2583 + 48.9447i −1.14321 + 1.98009i
\(612\) 0 0
\(613\) −7.10430 + 12.3050i −0.286940 + 0.496995i −0.973078 0.230477i \(-0.925971\pi\)
0.686138 + 0.727472i \(0.259305\pi\)
\(614\) 0 0
\(615\) −9.86100 + 13.0096i −0.397634 + 0.524599i
\(616\) 0 0
\(617\) 9.42220 16.3197i 0.379324 0.657008i −0.611640 0.791136i \(-0.709490\pi\)
0.990964 + 0.134128i \(0.0428234\pi\)
\(618\) 0 0
\(619\) −3.70769 + 6.42190i −0.149025 + 0.258118i −0.930867 0.365358i \(-0.880947\pi\)
0.781843 + 0.623476i \(0.214280\pi\)
\(620\) 0 0
\(621\) −5.32404 + 4.23738i −0.213646 + 0.170040i
\(622\) 0 0
\(623\) 27.4676 1.10047
\(624\) 0 0
\(625\) −28.3161 −1.13264
\(626\) 0 0
\(627\) −44.4533 + 5.70026i −1.77529 + 0.227646i
\(628\) 0 0
\(629\) −3.36593 + 5.82996i −0.134208 + 0.232456i
\(630\) 0 0
\(631\) −5.19989 9.00648i −0.207004 0.358542i 0.743765 0.668441i \(-0.233038\pi\)
−0.950770 + 0.309899i \(0.899705\pi\)
\(632\) 0 0
\(633\) −13.5188 + 17.8353i −0.537322 + 0.708890i
\(634\) 0 0
\(635\) 3.05592 + 5.29300i 0.121270 + 0.210046i
\(636\) 0 0
\(637\) −13.4478 −0.532822
\(638\) 0 0
\(639\) 5.82874 + 1.48817i 0.230581 + 0.0588711i
\(640\) 0 0
\(641\) −9.68760 16.7794i −0.382637 0.662747i 0.608801 0.793323i \(-0.291651\pi\)
−0.991438 + 0.130576i \(0.958317\pi\)
\(642\) 0 0
\(643\) 8.41115 0.331704 0.165852 0.986151i \(-0.446963\pi\)
0.165852 + 0.986151i \(0.446963\pi\)
\(644\) 0 0
\(645\) −0.498511 0.0626344i −0.0196289 0.00246623i
\(646\) 0 0
\(647\) −18.2120 −0.715987 −0.357993 0.933724i \(-0.616539\pi\)
−0.357993 + 0.933724i \(0.616539\pi\)
\(648\) 0 0
\(649\) −24.8220 + 42.9930i −0.974349 + 1.68762i
\(650\) 0 0
\(651\) −31.1648 + 41.1158i −1.22144 + 1.61145i
\(652\) 0 0
\(653\) 0.205260 + 0.355522i 0.00803246 + 0.0139126i 0.870014 0.493028i \(-0.164110\pi\)
−0.861981 + 0.506940i \(0.830776\pi\)
\(654\) 0 0
\(655\) 12.6042 0.492487
\(656\) 0 0
\(657\) 23.8314 + 6.08454i 0.929752 + 0.237381i
\(658\) 0 0
\(659\) 22.5408 0.878065 0.439033 0.898471i \(-0.355321\pi\)
0.439033 + 0.898471i \(0.355321\pi\)
\(660\) 0 0
\(661\) 6.74334 11.6798i 0.262286 0.454292i −0.704563 0.709641i \(-0.748857\pi\)
0.966849 + 0.255349i \(0.0821904\pi\)
\(662\) 0 0
\(663\) 22.3885 + 2.81295i 0.869497 + 0.109246i
\(664\) 0 0
\(665\) −22.5028 22.9242i −0.872620 0.888962i
\(666\) 0 0
\(667\) −4.43362 + 7.67926i −0.171671 + 0.297342i
\(668\) 0 0
\(669\) −34.0176 4.27406i −1.31519 0.165245i
\(670\) 0 0
\(671\) −29.5094 + 51.1118i −1.13920 + 1.97315i
\(672\) 0 0
\(673\) −16.2484 + 28.1431i −0.626331 + 1.08484i 0.361950 + 0.932197i \(0.382111\pi\)
−0.988282 + 0.152640i \(0.951222\pi\)
\(674\) 0 0
\(675\) 3.80588 + 1.49794i 0.146488 + 0.0576556i
\(676\) 0 0
\(677\) −8.95815 + 15.5160i −0.344290 + 0.596327i −0.985224 0.171268i \(-0.945214\pi\)
0.640935 + 0.767595i \(0.278547\pi\)
\(678\) 0 0
\(679\) 21.0183 0.806609
\(680\) 0 0
\(681\) 1.54418 + 3.66652i 0.0591730 + 0.140501i
\(682\) 0 0
\(683\) −21.3782 −0.818013 −0.409007 0.912531i \(-0.634125\pi\)
−0.409007 + 0.912531i \(0.634125\pi\)
\(684\) 0 0
\(685\) 37.9186 1.44879
\(686\) 0 0
\(687\) −13.1226 1.64877i −0.500660 0.0629044i
\(688\) 0 0
\(689\) −54.8036 −2.08785
\(690\) 0 0
\(691\) −6.55424 + 11.3523i −0.249335 + 0.431861i −0.963342 0.268278i \(-0.913545\pi\)
0.714006 + 0.700139i \(0.246879\pi\)
\(692\) 0 0
\(693\) −38.1177 + 39.0299i −1.44797 + 1.48262i
\(694\) 0 0
\(695\) 11.1209 19.2620i 0.421840 0.730648i
\(696\) 0 0
\(697\) −4.52538 + 7.83819i −0.171411 + 0.296893i
\(698\) 0 0
\(699\) −8.90699 21.1489i −0.336893 0.799924i
\(700\) 0 0
\(701\) 14.6527 25.3792i 0.553423 0.958557i −0.444601 0.895729i \(-0.646654\pi\)
0.998024 0.0628287i \(-0.0200122\pi\)
\(702\) 0 0
\(703\) −3.40122 + 12.2382i −0.128279 + 0.461574i
\(704\) 0 0
\(705\) −25.2244 + 33.2785i −0.950005 + 1.25334i
\(706\) 0 0
\(707\) 9.94666 17.2281i 0.374083 0.647930i
\(708\) 0 0
\(709\) 35.4120 1.32993 0.664963 0.746876i \(-0.268447\pi\)
0.664963 + 0.746876i \(0.268447\pi\)
\(710\) 0 0
\(711\) −23.9202 + 24.4927i −0.897078 + 0.918546i
\(712\) 0 0
\(713\) 12.7329 0.476850
\(714\) 0 0
\(715\) −40.2659 69.7426i −1.50586 2.60823i
\(716\) 0 0
\(717\) 35.6864 + 4.48375i 1.33273 + 0.167449i
\(718\) 0 0
\(719\) −22.1802 + 38.4172i −0.827181 + 1.43272i 0.0730598 + 0.997328i \(0.476724\pi\)
−0.900241 + 0.435392i \(0.856610\pi\)
\(720\) 0 0
\(721\) −27.3368 −1.01808
\(722\) 0 0
\(723\) −7.88211 + 10.3989i −0.293139 + 0.386739i
\(724\) 0 0
\(725\) 5.32996 0.197950
\(726\) 0 0
\(727\) 15.2280 + 26.3757i 0.564776 + 0.978221i 0.997070 + 0.0764886i \(0.0243709\pi\)
−0.432294 + 0.901733i \(0.642296\pi\)
\(728\) 0 0
\(729\) 19.7569 + 18.4028i 0.731738 + 0.681586i
\(730\) 0 0
\(731\) −0.278562 −0.0103030
\(732\) 0 0
\(733\) 9.44532 + 16.3598i 0.348871 + 0.604262i 0.986049 0.166454i \(-0.0532318\pi\)
−0.637178 + 0.770716i \(0.719898\pi\)
\(734\) 0 0
\(735\) −9.85859 1.23866i −0.363640 0.0456887i
\(736\) 0 0
\(737\) 29.9102 + 51.8060i 1.10176 + 1.90830i
\(738\) 0 0
\(739\) −1.35127 + 2.34047i −0.0497073 + 0.0860955i −0.889808 0.456334i \(-0.849162\pi\)
0.840101 + 0.542430i \(0.182496\pi\)
\(740\) 0 0
\(741\) 42.2303 5.41520i 1.55137 0.198932i
\(742\) 0 0
\(743\) 35.8953 1.31687 0.658436 0.752637i \(-0.271218\pi\)
0.658436 + 0.752637i \(0.271218\pi\)
\(744\) 0 0
\(745\) 10.1029 0.370141
\(746\) 0 0
\(747\) 16.1088 + 4.11283i 0.589390 + 0.150481i
\(748\) 0 0
\(749\) 20.2315 35.0420i 0.739244 1.28041i
\(750\) 0 0
\(751\) −8.02604 + 13.9015i −0.292874 + 0.507273i −0.974488 0.224439i \(-0.927945\pi\)
0.681614 + 0.731712i \(0.261278\pi\)
\(752\) 0 0
\(753\) 39.4037 + 4.95079i 1.43595 + 0.180417i
\(754\) 0 0
\(755\) −2.17585 + 3.76868i −0.0791873 + 0.137156i
\(756\) 0 0
\(757\) 7.03341 12.1822i 0.255634 0.442771i −0.709434 0.704772i \(-0.751049\pi\)
0.965067 + 0.262001i \(0.0843825\pi\)
\(758\) 0 0
\(759\) 13.3592 + 1.67849i 0.484907 + 0.0609252i
\(760\) 0 0
\(761\) −1.57990 2.73647i −0.0572714 0.0991969i 0.835968 0.548778i \(-0.184907\pi\)
−0.893240 + 0.449581i \(0.851573\pi\)
\(762\) 0 0
\(763\) −19.6945 34.1119i −0.712989 1.23493i
\(764\) 0 0
\(765\) 16.1539 + 4.12435i 0.584045 + 0.149116i
\(766\) 0 0
\(767\) 23.5807 40.8430i 0.851450 1.47475i
\(768\) 0 0
\(769\) −6.19324 + 10.7270i −0.223334 + 0.386826i −0.955818 0.293958i \(-0.905027\pi\)
0.732484 + 0.680784i \(0.238361\pi\)
\(770\) 0 0
\(771\) −19.6352 46.6221i −0.707145 1.67906i
\(772\) 0 0
\(773\) −15.2111 26.3464i −0.547105 0.947614i −0.998471 0.0552754i \(-0.982396\pi\)
0.451366 0.892339i \(-0.350937\pi\)
\(774\) 0 0
\(775\) −3.82676 6.62815i −0.137461 0.238090i
\(776\) 0 0
\(777\) 6.00142 + 14.2499i 0.215300 + 0.511211i
\(778\) 0 0
\(779\) −4.57283 + 16.4539i −0.163839 + 0.589522i
\(780\) 0 0
\(781\) −5.95174 10.3087i −0.212970 0.368875i
\(782\) 0 0
\(783\) 32.7405 + 12.8861i 1.17005 + 0.460513i
\(784\) 0 0
\(785\) −40.8879 −1.45935
\(786\) 0 0
\(787\) −13.5315 23.4372i −0.482346 0.835447i 0.517449 0.855714i \(-0.326882\pi\)
−0.999795 + 0.0202669i \(0.993548\pi\)
\(788\) 0 0
\(789\) −4.79649 0.602644i −0.170759 0.0214547i
\(790\) 0 0
\(791\) −18.2022 −0.647195
\(792\) 0 0
\(793\) 28.0337 48.5559i 0.995507 1.72427i
\(794\) 0 0
\(795\) −40.1765 5.04789i −1.42491 0.179030i
\(796\) 0 0
\(797\) 13.0870 + 22.6674i 0.463566 + 0.802919i 0.999136 0.0415716i \(-0.0132365\pi\)
−0.535570 + 0.844491i \(0.679903\pi\)
\(798\) 0 0
\(799\) −11.5759 + 20.0500i −0.409526 + 0.709319i
\(800\) 0 0
\(801\) −18.7941 + 19.2439i −0.664057 + 0.679948i
\(802\) 0 0
\(803\) −24.3343 42.1483i −0.858739 1.48738i
\(804\) 0 0
\(805\) 4.82528 + 8.35763i 0.170069 + 0.294568i
\(806\) 0 0
\(807\) 18.9137 + 44.9088i 0.665792 + 1.58087i
\(808\) 0 0
\(809\) 0.390777 0.0137390 0.00686949 0.999976i \(-0.497813\pi\)
0.00686949 + 0.999976i \(0.497813\pi\)
\(810\) 0 0
\(811\) −16.5905 28.7355i −0.582570 1.00904i −0.995174 0.0981302i \(-0.968714\pi\)
0.412604 0.910911i \(-0.364620\pi\)
\(812\) 0 0
\(813\) 14.1251 + 33.5389i 0.495390 + 1.17626i
\(814\) 0 0
\(815\) 51.7393 1.81235
\(816\) 0 0
\(817\) −0.508937 + 0.131321i −0.0178055 + 0.00459435i
\(818\) 0 0
\(819\) 36.2116 37.0781i 1.26533 1.29561i
\(820\) 0 0
\(821\) −33.4789 −1.16842 −0.584211 0.811602i \(-0.698596\pi\)
−0.584211 + 0.811602i \(0.698596\pi\)
\(822\) 0 0
\(823\) 5.66143 9.80589i 0.197345 0.341812i −0.750322 0.661073i \(-0.770101\pi\)
0.947667 + 0.319261i \(0.103435\pi\)
\(824\) 0 0
\(825\) −3.14125 7.45863i −0.109364 0.259676i
\(826\) 0 0
\(827\) −26.3316 45.6077i −0.915640 1.58593i −0.805962 0.591967i \(-0.798351\pi\)
−0.109678 0.993967i \(-0.534982\pi\)
\(828\) 0 0
\(829\) −20.5958 −0.715320 −0.357660 0.933852i \(-0.616425\pi\)
−0.357660 + 0.933852i \(0.616425\pi\)
\(830\) 0 0
\(831\) 4.46343 + 10.5980i 0.154835 + 0.367641i
\(832\) 0 0
\(833\) −5.50885 −0.190870
\(834\) 0 0
\(835\) −3.96613 + 6.86953i −0.137253 + 0.237730i
\(836\) 0 0
\(837\) −7.48198 49.9667i −0.258615 1.72710i
\(838\) 0 0
\(839\) −6.57498 11.3882i −0.226994 0.393164i 0.729922 0.683530i \(-0.239556\pi\)
−0.956916 + 0.290366i \(0.906223\pi\)
\(840\) 0 0
\(841\) 16.8515 0.581086
\(842\) 0 0
\(843\) 4.57474 6.03546i 0.157562 0.207872i
\(844\) 0 0
\(845\) 22.6156 + 39.1714i 0.778001 + 1.34754i
\(846\) 0 0
\(847\) 74.2528 2.55135
\(848\) 0 0
\(849\) 1.13027 1.49117i 0.0387909 0.0511769i
\(850\) 0 0
\(851\) 1.90801 3.30477i 0.0654056 0.113286i
\(852\) 0 0
\(853\) 10.2958 + 17.8328i 0.352520 + 0.610583i 0.986690 0.162610i \(-0.0519914\pi\)
−0.634170 + 0.773194i \(0.718658\pi\)
\(854\) 0 0
\(855\) 31.4578 0.0801047i 1.07583 0.00273952i
\(856\) 0 0
\(857\) −16.9467 29.3525i −0.578887 1.00266i −0.995607 0.0936271i \(-0.970154\pi\)
0.416720 0.909035i \(-0.363179\pi\)
\(858\) 0 0
\(859\) 8.09848 14.0270i 0.276316 0.478594i −0.694150 0.719830i \(-0.744220\pi\)
0.970466 + 0.241236i \(0.0775529\pi\)
\(860\) 0 0
\(861\) 8.06871 + 19.1585i 0.274981 + 0.652919i
\(862\) 0 0
\(863\) −18.4208 −0.627052 −0.313526 0.949580i \(-0.601510\pi\)
−0.313526 + 0.949580i \(0.601510\pi\)
\(864\) 0 0
\(865\) 16.8372 + 29.1628i 0.572481 + 0.991566i
\(866\) 0 0
\(867\) −20.0438 2.51836i −0.680723 0.0855280i
\(868\) 0 0
\(869\) 67.7428 2.29802
\(870\) 0 0
\(871\) −28.4145 49.2153i −0.962787 1.66760i
\(872\) 0 0
\(873\) −14.3813 + 14.7255i −0.486734 + 0.498382i
\(874\) 0 0
\(875\) −15.5235 + 26.8874i −0.524789 + 0.908961i
\(876\) 0 0
\(877\) −24.5510 −0.829028 −0.414514 0.910043i \(-0.636048\pi\)
−0.414514 + 0.910043i \(0.636048\pi\)
\(878\) 0 0
\(879\) 6.78807 + 0.852872i 0.228956 + 0.0287667i
\(880\) 0 0
\(881\) 25.2988 0.852339 0.426169 0.904643i \(-0.359863\pi\)
0.426169 + 0.904643i \(0.359863\pi\)
\(882\) 0 0
\(883\) −17.1678 29.7355i −0.577743 1.00068i −0.995738 0.0922306i \(-0.970600\pi\)
0.417995 0.908449i \(-0.362733\pi\)
\(884\) 0 0
\(885\) 21.0490 27.7700i 0.707555 0.933478i
\(886\) 0 0
\(887\) −21.9212 + 37.9687i −0.736043 + 1.27486i 0.218221 + 0.975899i \(0.429975\pi\)
−0.954264 + 0.298964i \(0.903359\pi\)
\(888\) 0 0
\(889\) 7.78303 0.261034
\(890\) 0 0
\(891\) −1.26324 53.4108i −0.0423202 1.78933i
\(892\) 0 0
\(893\) −11.6973 + 42.0890i −0.391434 + 1.40845i
\(894\) 0 0
\(895\) −19.4623 −0.650554
\(896\) 0 0
\(897\) −12.6911 1.59455i −0.423744 0.0532404i
\(898\) 0 0
\(899\) −32.9201 57.0193i −1.09795 1.90170i
\(900\) 0 0
\(901\) −22.4501 −0.747921
\(902\) 0 0
\(903\) −0.386486 + 0.509892i −0.0128615 + 0.0169681i
\(904\) 0 0
\(905\) −7.94977 13.7694i −0.264259 0.457710i
\(906\) 0 0
\(907\) −12.4217 21.5151i −0.412457 0.714396i 0.582701 0.812687i \(-0.301996\pi\)
−0.995158 + 0.0982903i \(0.968663\pi\)
\(908\) 0 0
\(909\) 5.26428 + 18.7566i 0.174605 + 0.622118i
\(910\) 0 0
\(911\) −9.32820 + 16.1569i −0.309057 + 0.535302i −0.978156 0.207871i \(-0.933347\pi\)
0.669099 + 0.743173i \(0.266680\pi\)
\(912\) 0 0
\(913\) −16.4487 28.4900i −0.544373 0.942882i
\(914\) 0 0
\(915\) 25.0239 33.0141i 0.827266 1.09141i
\(916\) 0 0
\(917\) 8.02533 13.9003i 0.265020 0.459028i
\(918\) 0 0
\(919\) 38.4666 1.26890 0.634448 0.772966i \(-0.281228\pi\)
0.634448 + 0.772966i \(0.281228\pi\)
\(920\) 0 0
\(921\) −12.8920 30.6110i −0.424807 1.00867i
\(922\) 0 0
\(923\) 5.65411 + 9.79320i 0.186107 + 0.322347i
\(924\) 0 0
\(925\) −2.29375 −0.0754179
\(926\) 0 0
\(927\) 18.7046 19.1523i 0.614341 0.629043i
\(928\) 0 0
\(929\) 11.7816 + 20.4063i 0.386540 + 0.669507i 0.991982 0.126383i \(-0.0403367\pi\)
−0.605441 + 0.795890i \(0.707003\pi\)
\(930\) 0 0
\(931\) −10.0648 + 2.59702i −0.329859 + 0.0851138i
\(932\) 0 0
\(933\) 41.8994 + 5.26436i 1.37172 + 0.172347i
\(934\) 0 0
\(935\) −16.4948 28.5698i −0.539437 0.934333i
\(936\) 0 0
\(937\) −9.71354 16.8243i −0.317328 0.549628i 0.662602 0.748972i \(-0.269452\pi\)
−0.979930 + 0.199344i \(0.936119\pi\)
\(938\) 0 0
\(939\) 13.2358 17.4620i 0.431934 0.569852i
\(940\) 0 0
\(941\) 12.5297 21.7022i 0.408458 0.707470i −0.586259 0.810124i \(-0.699400\pi\)
0.994717 + 0.102653i \(0.0327332\pi\)
\(942\) 0 0
\(943\) 2.56525 4.44315i 0.0835361 0.144689i
\(944\) 0 0
\(945\) 29.9619 23.8466i 0.974661 0.775729i
\(946\) 0 0
\(947\) −6.86239 11.8860i −0.222998 0.386243i 0.732719 0.680531i \(-0.238251\pi\)
−0.955717 + 0.294288i \(0.904918\pi\)
\(948\) 0 0
\(949\) 23.1174 + 40.0405i 0.750423 + 1.29977i
\(950\) 0 0
\(951\) 12.1696 16.0553i 0.394625 0.520630i
\(952\) 0 0
\(953\) −4.03543 + 6.98957i −0.130720 + 0.226414i −0.923955 0.382502i \(-0.875062\pi\)
0.793234 + 0.608917i \(0.208396\pi\)
\(954\) 0 0
\(955\) −21.8803 + 37.8979i −0.708031 + 1.22635i
\(956\) 0 0
\(957\) −27.0229 64.1635i −0.873526 2.07411i
\(958\) 0 0
\(959\) 24.1434 41.8177i 0.779632 1.35036i
\(960\) 0 0
\(961\) −31.7714 + 55.0297i −1.02488 + 1.77515i
\(962\) 0 0
\(963\) 10.7076 + 38.1510i 0.345046 + 1.22940i
\(964\) 0 0
\(965\) 20.6823 0.665786
\(966\) 0 0
\(967\) −16.3246 −0.524965 −0.262483 0.964937i \(-0.584541\pi\)
−0.262483 + 0.964937i \(0.584541\pi\)
\(968\) 0 0
\(969\) 17.2995 2.21832i 0.555739 0.0712627i
\(970\) 0 0
\(971\) −1.43687 + 2.48874i −0.0461115 + 0.0798674i −0.888160 0.459534i \(-0.848016\pi\)
0.842048 + 0.539402i \(0.181350\pi\)
\(972\) 0 0
\(973\) −14.1618 24.5289i −0.454005 0.786360i
\(974\) 0 0
\(975\) 2.98416 + 7.08564i 0.0955698 + 0.226922i
\(976\) 0 0
\(977\) 4.32031 + 7.48300i 0.138219 + 0.239402i 0.926823 0.375500i \(-0.122529\pi\)
−0.788604 + 0.614902i \(0.789196\pi\)
\(978\) 0 0
\(979\) 53.2255 1.70109
\(980\) 0 0
\(981\) 37.3745 + 9.54231i 1.19327 + 0.304662i
\(982\) 0 0
\(983\) −7.94611 13.7631i −0.253441 0.438974i 0.711030 0.703162i \(-0.248229\pi\)
−0.964471 + 0.264189i \(0.914896\pi\)
\(984\) 0 0
\(985\) −6.43672 −0.205091
\(986\) 0 0
\(987\) 20.6397 + 49.0072i 0.656969 + 1.55992i
\(988\) 0 0
\(989\) 0.157905 0.00502109
\(990\) 0 0
\(991\) −6.36050 + 11.0167i −0.202048 + 0.349957i −0.949188 0.314709i \(-0.898093\pi\)
0.747140 + 0.664666i \(0.231426\pi\)
\(992\) 0 0
\(993\) 9.04397 + 21.4741i 0.287002 + 0.681460i
\(994\) 0 0
\(995\) 29.9397 + 51.8571i 0.949153 + 1.64398i
\(996\) 0 0
\(997\) 26.2182 0.830339 0.415169 0.909744i \(-0.363722\pi\)
0.415169 + 0.909744i \(0.363722\pi\)
\(998\) 0 0
\(999\) −14.0898 5.54554i −0.445783 0.175453i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 684.2.l.a.277.6 yes 40
3.2 odd 2 2052.2.l.a.505.15 40
9.4 even 3 684.2.j.a.49.9 40
9.5 odd 6 2052.2.j.a.1873.6 40
19.7 even 3 684.2.j.a.349.9 yes 40
57.26 odd 6 2052.2.j.a.1261.6 40
171.121 even 3 inner 684.2.l.a.121.6 yes 40
171.140 odd 6 2052.2.l.a.577.15 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
684.2.j.a.49.9 40 9.4 even 3
684.2.j.a.349.9 yes 40 19.7 even 3
684.2.l.a.121.6 yes 40 171.121 even 3 inner
684.2.l.a.277.6 yes 40 1.1 even 1 trivial
2052.2.j.a.1261.6 40 57.26 odd 6
2052.2.j.a.1873.6 40 9.5 odd 6
2052.2.l.a.505.15 40 3.2 odd 2
2052.2.l.a.577.15 40 171.140 odd 6