Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [684,2,Mod(121,684)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(684, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([0, 2, 2]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("684.121");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 684 = 2^{2} \cdot 3^{2} \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 684.l (of order \(3\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(5.46176749826\) |
Analytic rank: | \(0\) |
Dimension: | \(40\) |
Relative dimension: | \(20\) over \(\Q(\zeta_{3})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{3}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
121.1 | 0 | −1.70674 | − | 0.295004i | 0 | 2.51503 | 0 | −0.950930 | − | 1.64706i | 0 | 2.82594 | + | 1.00699i | 0 | ||||||||||||
121.2 | 0 | −1.66388 | + | 0.481162i | 0 | −1.49057 | 0 | 0.903772 | + | 1.56538i | 0 | 2.53697 | − | 1.60119i | 0 | ||||||||||||
121.3 | 0 | −1.63863 | + | 0.561154i | 0 | 2.68159 | 0 | −0.125175 | − | 0.216810i | 0 | 2.37021 | − | 1.83905i | 0 | ||||||||||||
121.4 | 0 | −1.54198 | − | 0.788855i | 0 | −2.83853 | 0 | 0.648230 | + | 1.12277i | 0 | 1.75541 | + | 2.43280i | 0 | ||||||||||||
121.5 | 0 | −1.05089 | + | 1.37682i | 0 | −3.06171 | 0 | −2.37338 | − | 4.11082i | 0 | −0.791241 | − | 2.89378i | 0 | ||||||||||||
121.6 | 0 | −1.04626 | − | 1.38034i | 0 | −2.40565 | 0 | −1.53172 | − | 2.65301i | 0 | −0.810664 | + | 2.88839i | 0 | ||||||||||||
121.7 | 0 | −0.898479 | − | 1.48079i | 0 | 3.00646 | 0 | 0.886284 | + | 1.53509i | 0 | −1.38547 | + | 2.66092i | 0 | ||||||||||||
121.8 | 0 | −0.692830 | + | 1.58745i | 0 | 1.46442 | 0 | 1.54051 | + | 2.66824i | 0 | −2.03997 | − | 2.19966i | 0 | ||||||||||||
121.9 | 0 | −0.528191 | − | 1.64955i | 0 | 0.290319 | 0 | −0.636745 | − | 1.10287i | 0 | −2.44203 | + | 1.74255i | 0 | ||||||||||||
121.10 | 0 | −0.270575 | + | 1.71079i | 0 | 0.801046 | 0 | −1.41378 | − | 2.44874i | 0 | −2.85358 | − | 0.925792i | 0 | ||||||||||||
121.11 | 0 | 0.377158 | − | 1.69049i | 0 | −3.07739 | 0 | 2.34238 | + | 4.05712i | 0 | −2.71550 | − | 1.27516i | 0 | ||||||||||||
121.12 | 0 | 0.438235 | + | 1.67569i | 0 | −4.24712 | 0 | 1.38218 | + | 2.39401i | 0 | −2.61590 | + | 1.46870i | 0 | ||||||||||||
121.13 | 0 | 0.857237 | − | 1.50504i | 0 | 3.88804 | 0 | −0.0132784 | − | 0.0229989i | 0 | −1.53029 | − | 2.58035i | 0 | ||||||||||||
121.14 | 0 | 0.915791 | − | 1.47015i | 0 | −1.49623 | 0 | −1.75655 | − | 3.04244i | 0 | −1.32265 | − | 2.69269i | 0 | ||||||||||||
121.15 | 0 | 0.979052 | + | 1.42880i | 0 | −0.273500 | 0 | −0.546712 | − | 0.946933i | 0 | −1.08291 | + | 2.79773i | 0 | ||||||||||||
121.16 | 0 | 1.42321 | + | 0.987159i | 0 | 0.958709 | 0 | 2.11741 | + | 3.66746i | 0 | 1.05103 | + | 2.80986i | 0 | ||||||||||||
121.17 | 0 | 1.43544 | − | 0.969287i | 0 | 0.965937 | 0 | 0.302844 | + | 0.524541i | 0 | 1.12097 | − | 2.78270i | 0 | ||||||||||||
121.18 | 0 | 1.66089 | + | 0.491360i | 0 | 3.61559 | 0 | −2.29625 | − | 3.97722i | 0 | 2.51713 | + | 1.63219i | 0 | ||||||||||||
121.19 | 0 | 1.72309 | + | 0.176004i | 0 | 1.40487 | 0 | 1.81436 | + | 3.14256i | 0 | 2.93805 | + | 0.606538i | 0 | ||||||||||||
121.20 | 0 | 1.72837 | − | 0.112905i | 0 | −2.70132 | 0 | −0.793446 | − | 1.37429i | 0 | 2.97450 | − | 0.390282i | 0 | ||||||||||||
See all 40 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
171.g | even | 3 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 684.2.l.a | yes | 40 |
3.b | odd | 2 | 1 | 2052.2.l.a | 40 | ||
9.c | even | 3 | 1 | 684.2.j.a | ✓ | 40 | |
9.d | odd | 6 | 1 | 2052.2.j.a | 40 | ||
19.c | even | 3 | 1 | 684.2.j.a | ✓ | 40 | |
57.h | odd | 6 | 1 | 2052.2.j.a | 40 | ||
171.g | even | 3 | 1 | inner | 684.2.l.a | yes | 40 |
171.n | odd | 6 | 1 | 2052.2.l.a | 40 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
684.2.j.a | ✓ | 40 | 9.c | even | 3 | 1 | |
684.2.j.a | ✓ | 40 | 19.c | even | 3 | 1 | |
684.2.l.a | yes | 40 | 1.a | even | 1 | 1 | trivial |
684.2.l.a | yes | 40 | 171.g | even | 3 | 1 | inner |
2052.2.j.a | 40 | 9.d | odd | 6 | 1 | ||
2052.2.j.a | 40 | 57.h | odd | 6 | 1 | ||
2052.2.l.a | 40 | 3.b | odd | 2 | 1 | ||
2052.2.l.a | 40 | 171.n | odd | 6 | 1 |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(684, [\chi])\).