Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [684,2,Mod(49,684)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(684, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([0, 2, 4]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("684.49");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 684 = 2^{2} \cdot 3^{2} \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 684.j (of order \(3\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(5.46176749826\) |
Analytic rank: | \(0\) |
Dimension: | \(40\) |
Relative dimension: | \(20\) over \(\Q(\zeta_{3})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{3}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
49.1 | 0 | −1.73202 | + | 0.0101310i | 0 | −1.94402 | − | 3.36714i | 0 | −0.0132784 | − | 0.0229989i | 0 | 2.99979 | − | 0.0350943i | 0 | ||||||||||
49.2 | 0 | −1.73108 | − | 0.0580258i | 0 | 0.748116 | + | 1.29577i | 0 | −1.75655 | − | 3.04244i | 0 | 2.99327 | + | 0.200895i | 0 | ||||||||||
49.3 | 0 | −1.65259 | + | 0.518616i | 0 | 1.53869 | + | 2.66510i | 0 | 2.34238 | + | 4.05712i | 0 | 2.46208 | − | 1.71411i | 0 | ||||||||||
49.4 | 0 | −1.55715 | − | 0.758482i | 0 | −0.482969 | − | 0.836526i | 0 | 0.302844 | + | 0.524541i | 0 | 1.84941 | + | 2.36214i | 0 | ||||||||||
49.5 | 0 | −1.16446 | + | 1.28220i | 0 | −0.145159 | − | 0.251423i | 0 | −0.636745 | − | 1.10287i | 0 | −0.288081 | − | 2.98614i | 0 | ||||||||||
49.6 | 0 | −0.961962 | − | 1.44036i | 0 | 1.35066 | + | 2.33941i | 0 | −0.793446 | − | 1.37429i | 0 | −1.14926 | + | 2.77114i | 0 | ||||||||||
49.7 | 0 | −0.833161 | + | 1.51850i | 0 | −1.50323 | − | 2.60367i | 0 | 0.886284 | + | 1.53509i | 0 | −1.61168 | − | 2.53031i | 0 | ||||||||||
49.8 | 0 | −0.709119 | − | 1.58024i | 0 | −0.702434 | − | 1.21665i | 0 | 1.81436 | + | 3.14256i | 0 | −1.99430 | + | 2.24115i | 0 | ||||||||||
49.9 | 0 | −0.672276 | + | 1.59626i | 0 | 1.20282 | + | 2.08335i | 0 | −1.53172 | − | 2.65301i | 0 | −2.09609 | − | 2.14625i | 0 | ||||||||||
49.10 | 0 | −0.404917 | − | 1.68406i | 0 | −1.80780 | − | 3.13120i | 0 | −2.29625 | − | 3.97722i | 0 | −2.67209 | + | 1.36380i | 0 | ||||||||||
49.11 | 0 | 0.0878220 | + | 1.72982i | 0 | 1.41926 | + | 2.45824i | 0 | 0.648230 | + | 1.12277i | 0 | −2.98457 | + | 0.303833i | 0 | ||||||||||
49.12 | 0 | 0.143302 | − | 1.72611i | 0 | −0.479354 | − | 0.830266i | 0 | 2.11741 | + | 3.66746i | 0 | −2.95893 | − | 0.494710i | 0 | ||||||||||
49.13 | 0 | 0.597890 | + | 1.62559i | 0 | −1.25752 | − | 2.17808i | 0 | −0.950930 | − | 1.64706i | 0 | −2.28505 | + | 1.94384i | 0 | ||||||||||
49.14 | 0 | 0.747847 | − | 1.56228i | 0 | 0.136750 | + | 0.236858i | 0 | −0.546712 | − | 0.946933i | 0 | −1.88145 | − | 2.33670i | 0 | ||||||||||
49.15 | 0 | 1.23208 | − | 1.21737i | 0 | 2.12356 | + | 3.67811i | 0 | 1.38218 | + | 2.39401i | 0 | 0.0360230 | − | 2.99978i | 0 | ||||||||||
49.16 | 0 | 1.24864 | + | 1.20038i | 0 | 0.745287 | + | 1.29087i | 0 | 0.903772 | + | 1.56538i | 0 | 0.118185 | + | 2.99767i | 0 | ||||||||||
49.17 | 0 | 1.30529 | + | 1.13852i | 0 | −1.34080 | − | 2.32233i | 0 | −0.125175 | − | 0.216810i | 0 | 0.407555 | + | 2.97219i | 0 | ||||||||||
49.18 | 0 | 1.61687 | − | 0.621068i | 0 | −0.400523 | − | 0.693726i | 0 | −1.41378 | − | 2.44874i | 0 | 2.22855 | − | 2.00838i | 0 | ||||||||||
49.19 | 0 | 1.71780 | + | 0.221694i | 0 | 1.53086 | + | 2.65152i | 0 | −2.37338 | − | 4.11082i | 0 | 2.90170 | + | 0.761653i | 0 | ||||||||||
49.20 | 0 | 1.72118 | − | 0.193715i | 0 | −0.732210 | − | 1.26823i | 0 | 1.54051 | + | 2.66824i | 0 | 2.92495 | − | 0.666840i | 0 | ||||||||||
See all 40 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
171.h | even | 3 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 684.2.j.a | ✓ | 40 |
3.b | odd | 2 | 1 | 2052.2.j.a | 40 | ||
9.c | even | 3 | 1 | 684.2.l.a | yes | 40 | |
9.d | odd | 6 | 1 | 2052.2.l.a | 40 | ||
19.c | even | 3 | 1 | 684.2.l.a | yes | 40 | |
57.h | odd | 6 | 1 | 2052.2.l.a | 40 | ||
171.h | even | 3 | 1 | inner | 684.2.j.a | ✓ | 40 |
171.j | odd | 6 | 1 | 2052.2.j.a | 40 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
684.2.j.a | ✓ | 40 | 1.a | even | 1 | 1 | trivial |
684.2.j.a | ✓ | 40 | 171.h | even | 3 | 1 | inner |
684.2.l.a | yes | 40 | 9.c | even | 3 | 1 | |
684.2.l.a | yes | 40 | 19.c | even | 3 | 1 | |
2052.2.j.a | 40 | 3.b | odd | 2 | 1 | ||
2052.2.j.a | 40 | 171.j | odd | 6 | 1 | ||
2052.2.l.a | 40 | 9.d | odd | 6 | 1 | ||
2052.2.l.a | 40 | 57.h | odd | 6 | 1 |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(684, [\chi])\).