L(s) = 1 | + i·3-s + i·7-s − 9-s − 4.44·11-s − 2.44i·13-s − 3.44i·17-s − 7.34·19-s − 21-s − i·23-s − i·27-s + 9.44·29-s − 1.89·31-s − 4.44i·33-s − 9.89i·37-s + 2.44·39-s + ⋯ |
L(s) = 1 | + 0.577i·3-s + 0.377i·7-s − 0.333·9-s − 1.34·11-s − 0.679i·13-s − 0.836i·17-s − 1.68·19-s − 0.218·21-s − 0.208i·23-s − 0.192i·27-s + 1.75·29-s − 0.341·31-s − 0.774i·33-s − 1.62i·37-s + 0.392·39-s + ⋯ |
Λ(s)=(=(6900s/2ΓC(s)L(s)(0.447−0.894i)Λ(2−s)
Λ(s)=(=(6900s/2ΓC(s+1/2)L(s)(0.447−0.894i)Λ(1−s)
Degree: |
2 |
Conductor: |
6900
= 22⋅3⋅52⋅23
|
Sign: |
0.447−0.894i
|
Analytic conductor: |
55.0967 |
Root analytic conductor: |
7.42272 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ6900(6349,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 6900, ( :1/2), 0.447−0.894i)
|
Particular Values
L(1) |
≈ |
1.279956711 |
L(21) |
≈ |
1.279956711 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1−iT |
| 5 | 1 |
| 23 | 1+iT |
good | 7 | 1−iT−7T2 |
| 11 | 1+4.44T+11T2 |
| 13 | 1+2.44iT−13T2 |
| 17 | 1+3.44iT−17T2 |
| 19 | 1+7.34T+19T2 |
| 29 | 1−9.44T+29T2 |
| 31 | 1+1.89T+31T2 |
| 37 | 1+9.89iT−37T2 |
| 41 | 1+0.550T+41T2 |
| 43 | 1−7.79iT−43T2 |
| 47 | 1−7.34iT−47T2 |
| 53 | 1+4.34iT−53T2 |
| 59 | 1−6.55T+59T2 |
| 61 | 1−0.449T+61T2 |
| 67 | 1−8.79iT−67T2 |
| 71 | 1−2.34T+71T2 |
| 73 | 1−7.34iT−73T2 |
| 79 | 1−13.7T+79T2 |
| 83 | 1−15.4iT−83T2 |
| 89 | 1−3.10T+89T2 |
| 97 | 1−4.89iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.250218229261969247986287211029, −7.48798000741704326785257263251, −6.61695438552252573796770840184, −5.85163458118044833736888380961, −5.19185113491397915728215025493, −4.61442598403851442222482269322, −3.76817378375079348899863129121, −2.64597741395011625175523822498, −2.42503599151958582720818296757, −0.68502340513980062447050138675,
0.45263153025545721513988502309, 1.75624935628303556591469966681, 2.40632371359559877412702427040, 3.36994151581093976930997991288, 4.31191390854305006432098092524, 4.94991970835248592635296359697, 5.85823240860611581496770586435, 6.55181880838343658152915948167, 7.03794079556070990732760205121, 7.947069103211280545808572967565