Properties

Label 6900.2.f.h
Level $6900$
Weight $2$
Character orbit 6900.f
Analytic conductor $55.097$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [6900,2,Mod(6349,6900)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6900, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("6900.6349");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 6900 = 2^{2} \cdot 3 \cdot 5^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6900.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(55.0967773947\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 1380)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{3} - \beta_1 q^{7} - q^{9} + (\beta_{3} - 2) q^{11} - \beta_{2} q^{13} + ( - \beta_{2} + \beta_1) q^{17} + 3 \beta_{3} q^{19} - q^{21} + \beta_1 q^{23} + \beta_1 q^{27} + ( - \beta_{3} + 7) q^{29}+ \cdots + ( - \beta_{3} + 2) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{9} - 8 q^{11} - 4 q^{21} + 28 q^{29} + 12 q^{31} - 12 q^{41} + 24 q^{49} + 4 q^{51} + 36 q^{59} - 8 q^{61} + 4 q^{69} - 20 q^{71} + 16 q^{79} + 4 q^{81} + 32 q^{89} + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 9 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{2} ) / 3 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} + 3\nu ) / 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -\nu^{3} + 3\nu ) / 3 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{3} + \beta_{2} ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( 3\beta_1 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( -3\beta_{3} + 3\beta_{2} ) / 2 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/6900\mathbb{Z}\right)^\times\).

\(n\) \(277\) \(1201\) \(3451\) \(4601\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
6349.1
−1.22474 1.22474i
1.22474 + 1.22474i
−1.22474 + 1.22474i
1.22474 1.22474i
0 1.00000i 0 0 0 1.00000i 0 −1.00000 0
6349.2 0 1.00000i 0 0 0 1.00000i 0 −1.00000 0
6349.3 0 1.00000i 0 0 0 1.00000i 0 −1.00000 0
6349.4 0 1.00000i 0 0 0 1.00000i 0 −1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 6900.2.f.h 4
5.b even 2 1 inner 6900.2.f.h 4
5.c odd 4 1 1380.2.a.f 2
5.c odd 4 1 6900.2.a.r 2
15.e even 4 1 4140.2.a.r 2
20.e even 4 1 5520.2.a.bl 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1380.2.a.f 2 5.c odd 4 1
4140.2.a.r 2 15.e even 4 1
5520.2.a.bl 2 20.e even 4 1
6900.2.a.r 2 5.c odd 4 1
6900.2.f.h 4 1.a even 1 1 trivial
6900.2.f.h 4 5.b even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(6900, [\chi])\):

\( T_{7}^{2} + 1 \) Copy content Toggle raw display
\( T_{11}^{2} + 4T_{11} - 2 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$11$ \( (T^{2} + 4 T - 2)^{2} \) Copy content Toggle raw display
$13$ \( (T^{2} + 6)^{2} \) Copy content Toggle raw display
$17$ \( T^{4} + 14T^{2} + 25 \) Copy content Toggle raw display
$19$ \( (T^{2} - 54)^{2} \) Copy content Toggle raw display
$23$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$29$ \( (T^{2} - 14 T + 43)^{2} \) Copy content Toggle raw display
$31$ \( (T^{2} - 6 T - 15)^{2} \) Copy content Toggle raw display
$37$ \( T^{4} + 98T^{2} + 1 \) Copy content Toggle raw display
$41$ \( (T^{2} + 6 T + 3)^{2} \) Copy content Toggle raw display
$43$ \( T^{4} + 200T^{2} + 8464 \) Copy content Toggle raw display
$47$ \( (T^{2} + 54)^{2} \) Copy content Toggle raw display
$53$ \( T^{4} + 126T^{2} + 2025 \) Copy content Toggle raw display
$59$ \( (T^{2} - 18 T + 75)^{2} \) Copy content Toggle raw display
$61$ \( (T^{2} + 4 T - 2)^{2} \) Copy content Toggle raw display
$67$ \( T^{4} + 194T^{2} + 9025 \) Copy content Toggle raw display
$71$ \( (T^{2} + 10 T - 29)^{2} \) Copy content Toggle raw display
$73$ \( (T^{2} + 54)^{2} \) Copy content Toggle raw display
$79$ \( (T^{2} - 8 T - 80)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} + 350 T^{2} + 26569 \) Copy content Toggle raw display
$89$ \( (T^{2} - 16 T + 40)^{2} \) Copy content Toggle raw display
$97$ \( (T^{2} + 24)^{2} \) Copy content Toggle raw display
show more
show less