Properties

Label 2-6900-5.4-c1-0-1
Degree $2$
Conductor $6900$
Sign $-0.894 + 0.447i$
Analytic cond. $55.0967$
Root an. cond. $7.42272$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + i·3-s − 1.32i·7-s − 9-s − 3.84·11-s + 4.36i·13-s + 2.75i·17-s + 5.92·19-s + 1.32·21-s i·23-s i·27-s − 0.761·29-s − 8.72·31-s − 3.84i·33-s + 3.24i·37-s − 4.36·39-s + ⋯
L(s)  = 1  + 0.577i·3-s − 0.499i·7-s − 0.333·9-s − 1.15·11-s + 1.21i·13-s + 0.669i·17-s + 1.35·19-s + 0.288·21-s − 0.208i·23-s − 0.192i·27-s − 0.141·29-s − 1.56·31-s − 0.669i·33-s + 0.532i·37-s − 0.698·39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6900 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.894 + 0.447i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6900 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.894 + 0.447i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6900\)    =    \(2^{2} \cdot 3 \cdot 5^{2} \cdot 23\)
Sign: $-0.894 + 0.447i$
Analytic conductor: \(55.0967\)
Root analytic conductor: \(7.42272\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{6900} (6349, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 6900,\ (\ :1/2),\ -0.894 + 0.447i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.2520413970\)
\(L(\frac12)\) \(\approx\) \(0.2520413970\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - iT \)
5 \( 1 \)
23 \( 1 + iT \)
good7 \( 1 + 1.32iT - 7T^{2} \)
11 \( 1 + 3.84T + 11T^{2} \)
13 \( 1 - 4.36iT - 13T^{2} \)
17 \( 1 - 2.75iT - 17T^{2} \)
19 \( 1 - 5.92T + 19T^{2} \)
29 \( 1 + 0.761T + 29T^{2} \)
31 \( 1 + 8.72T + 31T^{2} \)
37 \( 1 - 3.24iT - 37T^{2} \)
41 \( 1 - 4.16T + 41T^{2} \)
43 \( 1 - 9.72iT - 43T^{2} \)
47 \( 1 + 2.92iT - 47T^{2} \)
53 \( 1 + 11.2iT - 53T^{2} \)
59 \( 1 - 3.08T + 59T^{2} \)
61 \( 1 + 6.08T + 61T^{2} \)
67 \( 1 - 2.19iT - 67T^{2} \)
71 \( 1 + 1.39T + 71T^{2} \)
73 \( 1 + 9.20iT - 73T^{2} \)
79 \( 1 + 14.3T + 79T^{2} \)
83 \( 1 + 3.03iT - 83T^{2} \)
89 \( 1 - 18.3T + 89T^{2} \)
97 \( 1 - 5.43iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.315086130681236306368257442763, −7.65233690349355420947268268754, −7.07152621552942004650388206368, −6.20200412867593025061850855868, −5.41821247120966990800559829897, −4.81640714122696303015687864904, −4.02401190140712132977252826677, −3.35667907431116049227856361443, −2.41991733068359404362825558133, −1.39022045198088591205284729123, 0.06414555308049292543976963153, 1.14851076615354850937021519043, 2.38461789267553863276502191962, 2.88894860379068169646096111531, 3.74343765044263181822247861239, 5.01629255335716809639138138008, 5.54893812981739745102409757827, 5.87798814904906325767468609303, 7.25167247851772216723323198530, 7.41047962833030892897465496242

Graph of the $Z$-function along the critical line