Properties

Label 6900.2.f.s
Level $6900$
Weight $2$
Character orbit 6900.f
Analytic conductor $55.097$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [6900,2,Mod(6349,6900)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6900, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("6900.6349");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 6900 = 2^{2} \cdot 3 \cdot 5^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6900.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(55.0967773947\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 20x^{6} + 80x^{4} + 41x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{4} q^{3} + (\beta_{5} - \beta_{4}) q^{7} - q^{9} + \beta_{2} q^{11} + (\beta_{5} + \beta_{4} - 2 \beta_1) q^{13} + (\beta_{7} - 2 \beta_{4} - \beta_1) q^{17} + ( - \beta_{3} - \beta_{2} - 1) q^{19}+ \cdots - \beta_{2} q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{9} - 4 q^{11} - 4 q^{19} - 6 q^{21} + 2 q^{29} - 12 q^{31} + 2 q^{39} - 10 q^{41} - 26 q^{49} - 20 q^{51} + 6 q^{59} - 24 q^{61} + 8 q^{69} - 46 q^{71} - 22 q^{79} + 8 q^{81} - 12 q^{89} - 38 q^{91}+ \cdots + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} + 20x^{6} + 80x^{4} + 41x^{2} + 4 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 2\nu^{6} + 37\nu^{4} + 120\nu^{2} + 26 ) / 31 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -4\nu^{6} - 74\nu^{4} - 209\nu^{2} + 72 ) / 31 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -13\nu^{7} - 256\nu^{5} - 966\nu^{3} - 293\nu ) / 62 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -9\nu^{7} - 182\nu^{5} - 757\nu^{3} - 458\nu ) / 31 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( -13\nu^{6} - 256\nu^{4} - 966\nu^{2} - 262 ) / 31 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 24\nu^{7} + 475\nu^{5} + 1812\nu^{3} + 498\nu ) / 31 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{3} + 2\beta_{2} - 4 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -2\beta_{7} - \beta_{5} - 6\beta_{4} - 11\beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( -2\beta_{6} - 12\beta_{3} - 37\beta_{2} + 42 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 37\beta_{7} + 12\beta_{5} + 120\beta_{4} + 150\beta_1 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 37\beta_{6} + 162\beta_{3} + 580\beta_{2} - 550 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( -580\beta_{7} - 162\beta_{5} - 1922\beta_{4} - 2159\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/6900\mathbb{Z}\right)^\times\).

\(n\) \(277\) \(1201\) \(3451\) \(4601\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
6349.1
0.672035i
2.15613i
3.84324i
0.359141i
0.359141i
3.84324i
2.15613i
0.672035i
0 1.00000i 0 0 0 4.30400i 0 −1.00000 0
6349.2 0 1.00000i 0 0 0 3.22855i 0 −1.00000 0
6349.3 0 1.00000i 0 0 0 1.32284i 0 −1.00000 0
6349.4 0 1.00000i 0 0 0 3.20970i 0 −1.00000 0
6349.5 0 1.00000i 0 0 0 3.20970i 0 −1.00000 0
6349.6 0 1.00000i 0 0 0 1.32284i 0 −1.00000 0
6349.7 0 1.00000i 0 0 0 3.22855i 0 −1.00000 0
6349.8 0 1.00000i 0 0 0 4.30400i 0 −1.00000 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 6349.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 6900.2.f.s 8
5.b even 2 1 inner 6900.2.f.s 8
5.c odd 4 1 6900.2.a.ba 4
5.c odd 4 1 6900.2.a.bb yes 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
6900.2.a.ba 4 5.c odd 4 1
6900.2.a.bb yes 4 5.c odd 4 1
6900.2.f.s 8 1.a even 1 1 trivial
6900.2.f.s 8 5.b even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(6900, [\chi])\):

\( T_{7}^{8} + 41T_{7}^{6} + 560T_{7}^{4} + 2849T_{7}^{2} + 3481 \) Copy content Toggle raw display
\( T_{11}^{4} + 2T_{11}^{3} - 8T_{11}^{2} - 3T_{11} + 2 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} \) Copy content Toggle raw display
$3$ \( (T^{2} + 1)^{4} \) Copy content Toggle raw display
$5$ \( T^{8} \) Copy content Toggle raw display
$7$ \( T^{8} + 41 T^{6} + \cdots + 3481 \) Copy content Toggle raw display
$11$ \( (T^{4} + 2 T^{3} - 8 T^{2} + \cdots + 2)^{2} \) Copy content Toggle raw display
$13$ \( T^{8} + 77 T^{6} + \cdots + 84681 \) Copy content Toggle raw display
$17$ \( T^{8} + 114 T^{6} + \cdots + 262144 \) Copy content Toggle raw display
$19$ \( (T^{4} + 2 T^{3} + \cdots + 252)^{2} \) Copy content Toggle raw display
$23$ \( (T^{2} + 1)^{4} \) Copy content Toggle raw display
$29$ \( (T^{4} - T^{3} - 54 T^{2} + \cdots + 64)^{2} \) Copy content Toggle raw display
$31$ \( (T^{4} + 6 T^{3} + \cdots - 864)^{2} \) Copy content Toggle raw display
$37$ \( T^{8} + 138 T^{6} + \cdots + 4624 \) Copy content Toggle raw display
$41$ \( (T^{4} + 5 T^{3} + \cdots + 228)^{2} \) Copy content Toggle raw display
$43$ \( T^{8} + 308 T^{6} + \cdots + 20493729 \) Copy content Toggle raw display
$47$ \( T^{8} + 134 T^{6} + \cdots + 46656 \) Copy content Toggle raw display
$53$ \( T^{8} + 171 T^{6} + \cdots + 186624 \) Copy content Toggle raw display
$59$ \( (T^{4} - 3 T^{3} + \cdots - 456)^{2} \) Copy content Toggle raw display
$61$ \( (T^{4} + 12 T^{3} + \cdots + 14)^{2} \) Copy content Toggle raw display
$67$ \( T^{8} + 172 T^{6} + \cdots + 478864 \) Copy content Toggle raw display
$71$ \( (T^{4} + 23 T^{3} + \cdots + 128)^{2} \) Copy content Toggle raw display
$73$ \( T^{8} + 159 T^{6} + \cdots + 1205604 \) Copy content Toggle raw display
$79$ \( (T^{4} + 11 T^{3} + \cdots + 512)^{2} \) Copy content Toggle raw display
$83$ \( T^{8} + 439 T^{6} + \cdots + 438244 \) Copy content Toggle raw display
$89$ \( (T^{4} + 6 T^{3} + \cdots - 8896)^{2} \) Copy content Toggle raw display
$97$ \( T^{8} + 396 T^{6} + \cdots + 12659364 \) Copy content Toggle raw display
show more
show less