Properties

Label 6900.2.a.ba
Level $6900$
Weight $2$
Character orbit 6900.a
Self dual yes
Analytic conductor $55.097$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [6900,2,Mod(1,6900)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6900, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("6900.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 6900 = 2^{2} \cdot 3 \cdot 5^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6900.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(55.0967773947\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.175557.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 8x^{2} + 3x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - q^{3} + ( - \beta_{3} - \beta_1 + 1) q^{7} + q^{9} - \beta_1 q^{11} + (\beta_{3} - \beta_1 + 1) q^{13} + ( - \beta_{2} + \beta_1 + 2) q^{17} + ( - \beta_{2} - \beta_1 + 1) q^{19} + (\beta_{3} + \beta_1 - 1) q^{21}+ \cdots - \beta_1 q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{3} + 3 q^{7} + 4 q^{9} - 2 q^{11} + q^{13} + 10 q^{17} + 2 q^{19} - 3 q^{21} + 4 q^{23} - 4 q^{27} - q^{29} - 6 q^{31} + 2 q^{33} + 14 q^{37} - q^{39} - 5 q^{41} - 2 q^{43} + 14 q^{47} + 13 q^{49}+ \cdots - 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 2x^{3} - 8x^{2} + 3x + 2 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 2\nu - 4 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} - 2\nu^{2} - 8\nu + 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 2\beta _1 + 4 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} + 2\beta_{2} + 12\beta _1 + 6 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−0.359141
3.84324
−2.15613
0.672035
0 −1.00000 0 0 0 −3.20970 0 1.00000 0
1.2 0 −1.00000 0 0 0 −1.32284 0 1.00000 0
1.3 0 −1.00000 0 0 0 3.22855 0 1.00000 0
1.4 0 −1.00000 0 0 0 4.30400 0 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( +1 \)
\(5\) \( -1 \)
\(23\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 6900.2.a.ba 4
5.b even 2 1 6900.2.a.bb yes 4
5.c odd 4 2 6900.2.f.s 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
6900.2.a.ba 4 1.a even 1 1 trivial
6900.2.a.bb yes 4 5.b even 2 1
6900.2.f.s 8 5.c odd 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(6900))\):

\( T_{7}^{4} - 3T_{7}^{3} - 16T_{7}^{2} + 31T_{7} + 59 \) Copy content Toggle raw display
\( T_{11}^{4} + 2T_{11}^{3} - 8T_{11}^{2} - 3T_{11} + 2 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( (T + 1)^{4} \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( T^{4} - 3 T^{3} + \cdots + 59 \) Copy content Toggle raw display
$11$ \( T^{4} + 2 T^{3} + \cdots + 2 \) Copy content Toggle raw display
$13$ \( T^{4} - T^{3} + \cdots + 291 \) Copy content Toggle raw display
$17$ \( T^{4} - 10 T^{3} + \cdots - 512 \) Copy content Toggle raw display
$19$ \( T^{4} - 2 T^{3} + \cdots + 252 \) Copy content Toggle raw display
$23$ \( (T - 1)^{4} \) Copy content Toggle raw display
$29$ \( T^{4} + T^{3} + \cdots + 64 \) Copy content Toggle raw display
$31$ \( T^{4} + 6 T^{3} + \cdots - 864 \) Copy content Toggle raw display
$37$ \( T^{4} - 14 T^{3} + \cdots - 68 \) Copy content Toggle raw display
$41$ \( T^{4} + 5 T^{3} + \cdots + 228 \) Copy content Toggle raw display
$43$ \( T^{4} + 2 T^{3} + \cdots + 4527 \) Copy content Toggle raw display
$47$ \( T^{4} - 14 T^{3} + \cdots - 216 \) Copy content Toggle raw display
$53$ \( T^{4} - 11 T^{3} + \cdots - 432 \) Copy content Toggle raw display
$59$ \( T^{4} + 3 T^{3} + \cdots - 456 \) Copy content Toggle raw display
$61$ \( T^{4} + 12 T^{3} + \cdots + 14 \) Copy content Toggle raw display
$67$ \( T^{4} - 12 T^{3} + \cdots - 692 \) Copy content Toggle raw display
$71$ \( T^{4} + 23 T^{3} + \cdots + 128 \) Copy content Toggle raw display
$73$ \( T^{4} - 5 T^{3} + \cdots + 1098 \) Copy content Toggle raw display
$79$ \( T^{4} - 11 T^{3} + \cdots + 512 \) Copy content Toggle raw display
$83$ \( T^{4} - 5 T^{3} + \cdots - 662 \) Copy content Toggle raw display
$89$ \( T^{4} - 6 T^{3} + \cdots - 8896 \) Copy content Toggle raw display
$97$ \( T^{4} - 26 T^{3} + \cdots - 3558 \) Copy content Toggle raw display
show more
show less