L(s) = 1 | + (0.183 + 0.132i)2-s + (−0.602 − 1.85i)4-s + (−2.01 + 1.46i)5-s + (0.309 + 0.951i)7-s + (0.276 − 0.849i)8-s − 0.564·10-s + (2.66 − 1.97i)11-s + (−4.15 − 3.01i)13-s + (−0.0699 + 0.215i)14-s + (−2.98 + 2.17i)16-s + (−1.16 + 0.844i)17-s + (−1.87 + 5.77i)19-s + (3.93 + 2.85i)20-s + (0.750 − 0.00659i)22-s − 7.08·23-s + ⋯ |
L(s) = 1 | + (0.129 + 0.0940i)2-s + (−0.301 − 0.926i)4-s + (−0.902 + 0.655i)5-s + (0.116 + 0.359i)7-s + (0.0975 − 0.300i)8-s − 0.178·10-s + (0.803 − 0.594i)11-s + (−1.15 − 0.837i)13-s + (−0.0186 + 0.0574i)14-s + (−0.747 + 0.543i)16-s + (−0.282 + 0.204i)17-s + (−0.430 + 1.32i)19-s + (0.879 + 0.639i)20-s + (0.159 − 0.00140i)22-s − 1.47·23-s + ⋯ |
Λ(s)=(=(693s/2ΓC(s)L(s)(−0.999+0.0325i)Λ(2−s)
Λ(s)=(=(693s/2ΓC(s+1/2)L(s)(−0.999+0.0325i)Λ(1−s)
Degree: |
2 |
Conductor: |
693
= 32⋅7⋅11
|
Sign: |
−0.999+0.0325i
|
Analytic conductor: |
5.53363 |
Root analytic conductor: |
2.35236 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ693(631,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 693, ( :1/2), −0.999+0.0325i)
|
Particular Values
L(1) |
≈ |
0.00209558−0.128714i |
L(21) |
≈ |
0.00209558−0.128714i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 7 | 1+(−0.309−0.951i)T |
| 11 | 1+(−2.66+1.97i)T |
good | 2 | 1+(−0.183−0.132i)T+(0.618+1.90i)T2 |
| 5 | 1+(2.01−1.46i)T+(1.54−4.75i)T2 |
| 13 | 1+(4.15+3.01i)T+(4.01+12.3i)T2 |
| 17 | 1+(1.16−0.844i)T+(5.25−16.1i)T2 |
| 19 | 1+(1.87−5.77i)T+(−15.3−11.1i)T2 |
| 23 | 1+7.08T+23T2 |
| 29 | 1+(2.01+6.19i)T+(−23.4+17.0i)T2 |
| 31 | 1+(6.22+4.51i)T+(9.57+29.4i)T2 |
| 37 | 1+(1.23+3.78i)T+(−29.9+21.7i)T2 |
| 41 | 1+(2.08−6.41i)T+(−33.1−24.0i)T2 |
| 43 | 1+0.802T+43T2 |
| 47 | 1+(2.08−6.42i)T+(−38.0−27.6i)T2 |
| 53 | 1+(−5.32−3.86i)T+(16.3+50.4i)T2 |
| 59 | 1+(0.888+2.73i)T+(−47.7+34.6i)T2 |
| 61 | 1+(−0.691+0.502i)T+(18.8−58.0i)T2 |
| 67 | 1+1.64T+67T2 |
| 71 | 1+(−3.65+2.65i)T+(21.9−67.5i)T2 |
| 73 | 1+(4.58+14.1i)T+(−59.0+42.9i)T2 |
| 79 | 1+(1.98+1.44i)T+(24.4+75.1i)T2 |
| 83 | 1+(−1.81+1.32i)T+(25.6−78.9i)T2 |
| 89 | 1+1.73T+89T2 |
| 97 | 1+(−9.77−7.09i)T+(29.9+92.2i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.06507491731536067071844657888, −9.331807243922318950289728518739, −8.156257284375563873421612684532, −7.50381377868132041579950766258, −6.23685991520938473064640110860, −5.71693051147059081502265432133, −4.39115417714864633834381833809, −3.56607871501856589889877774450, −2.00736597968515148287647716497, −0.06211053370300269099319149531,
2.11122368624654462820966833509, 3.66950059820888842696428177278, 4.37498648445733463735319080051, 5.02174525471618439992811165167, 7.00879435627334062149179762775, 7.20344349326745189130400927345, 8.448372640695146820183419015932, 8.941143292291558286756588848566, 9.884328891776014077136354070901, 11.18004333278289520887769453830