L(s) = 1 | + (0.183 + 0.132i)2-s + (−0.602 − 1.85i)4-s + (−2.01 + 1.46i)5-s + (0.309 + 0.951i)7-s + (0.276 − 0.849i)8-s − 0.564·10-s + (2.66 − 1.97i)11-s + (−4.15 − 3.01i)13-s + (−0.0699 + 0.215i)14-s + (−2.98 + 2.17i)16-s + (−1.16 + 0.844i)17-s + (−1.87 + 5.77i)19-s + (3.93 + 2.85i)20-s + (0.750 − 0.00659i)22-s − 7.08·23-s + ⋯ |
L(s) = 1 | + (0.129 + 0.0940i)2-s + (−0.301 − 0.926i)4-s + (−0.902 + 0.655i)5-s + (0.116 + 0.359i)7-s + (0.0975 − 0.300i)8-s − 0.178·10-s + (0.803 − 0.594i)11-s + (−1.15 − 0.837i)13-s + (−0.0186 + 0.0574i)14-s + (−0.747 + 0.543i)16-s + (−0.282 + 0.204i)17-s + (−0.430 + 1.32i)19-s + (0.879 + 0.639i)20-s + (0.159 − 0.00140i)22-s − 1.47·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.999 + 0.0325i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.999 + 0.0325i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.00209558 - 0.128714i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.00209558 - 0.128714i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 + (-0.309 - 0.951i)T \) |
| 11 | \( 1 + (-2.66 + 1.97i)T \) |
good | 2 | \( 1 + (-0.183 - 0.132i)T + (0.618 + 1.90i)T^{2} \) |
| 5 | \( 1 + (2.01 - 1.46i)T + (1.54 - 4.75i)T^{2} \) |
| 13 | \( 1 + (4.15 + 3.01i)T + (4.01 + 12.3i)T^{2} \) |
| 17 | \( 1 + (1.16 - 0.844i)T + (5.25 - 16.1i)T^{2} \) |
| 19 | \( 1 + (1.87 - 5.77i)T + (-15.3 - 11.1i)T^{2} \) |
| 23 | \( 1 + 7.08T + 23T^{2} \) |
| 29 | \( 1 + (2.01 + 6.19i)T + (-23.4 + 17.0i)T^{2} \) |
| 31 | \( 1 + (6.22 + 4.51i)T + (9.57 + 29.4i)T^{2} \) |
| 37 | \( 1 + (1.23 + 3.78i)T + (-29.9 + 21.7i)T^{2} \) |
| 41 | \( 1 + (2.08 - 6.41i)T + (-33.1 - 24.0i)T^{2} \) |
| 43 | \( 1 + 0.802T + 43T^{2} \) |
| 47 | \( 1 + (2.08 - 6.42i)T + (-38.0 - 27.6i)T^{2} \) |
| 53 | \( 1 + (-5.32 - 3.86i)T + (16.3 + 50.4i)T^{2} \) |
| 59 | \( 1 + (0.888 + 2.73i)T + (-47.7 + 34.6i)T^{2} \) |
| 61 | \( 1 + (-0.691 + 0.502i)T + (18.8 - 58.0i)T^{2} \) |
| 67 | \( 1 + 1.64T + 67T^{2} \) |
| 71 | \( 1 + (-3.65 + 2.65i)T + (21.9 - 67.5i)T^{2} \) |
| 73 | \( 1 + (4.58 + 14.1i)T + (-59.0 + 42.9i)T^{2} \) |
| 79 | \( 1 + (1.98 + 1.44i)T + (24.4 + 75.1i)T^{2} \) |
| 83 | \( 1 + (-1.81 + 1.32i)T + (25.6 - 78.9i)T^{2} \) |
| 89 | \( 1 + 1.73T + 89T^{2} \) |
| 97 | \( 1 + (-9.77 - 7.09i)T + (29.9 + 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.06507491731536067071844657888, −9.331807243922318950289728518739, −8.156257284375563873421612684532, −7.50381377868132041579950766258, −6.23685991520938473064640110860, −5.71693051147059081502265432133, −4.39115417714864633834381833809, −3.56607871501856589889877774450, −2.00736597968515148287647716497, −0.06211053370300269099319149531,
2.11122368624654462820966833509, 3.66950059820888842696428177278, 4.37498648445733463735319080051, 5.02174525471618439992811165167, 7.00879435627334062149179762775, 7.20344349326745189130400927345, 8.448372640695146820183419015932, 8.941143292291558286756588848566, 9.884328891776014077136354070901, 11.18004333278289520887769453830