L(s) = 1 | + 4i·2-s − 22.6i·3-s − 16·4-s + (43.3 + 35.2i)5-s + 90.7·6-s + 49i·7-s − 64i·8-s − 272.·9-s + (−141. + 173. i)10-s + 527.·11-s + 363. i·12-s − 1.08e3i·13-s − 196·14-s + (800. − 984. i)15-s + 256·16-s − 1.82e3i·17-s + ⋯ |
L(s) = 1 | + 0.707i·2-s − 1.45i·3-s − 0.5·4-s + (0.776 + 0.630i)5-s + 1.02·6-s + 0.377i·7-s − 0.353i·8-s − 1.11·9-s + (−0.445 + 0.548i)10-s + 1.31·11-s + 0.727i·12-s − 1.77i·13-s − 0.267·14-s + (0.918 − 1.12i)15-s + 0.250·16-s − 1.53i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 70 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.776 + 0.630i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 70 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (0.776 + 0.630i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(3)\) |
\(\approx\) |
\(1.80762 - 0.641812i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.80762 - 0.641812i\) |
\(L(\frac{7}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - 4iT \) |
| 5 | \( 1 + (-43.3 - 35.2i)T \) |
| 7 | \( 1 - 49iT \) |
good | 3 | \( 1 + 22.6iT - 243T^{2} \) |
| 11 | \( 1 - 527.T + 1.61e5T^{2} \) |
| 13 | \( 1 + 1.08e3iT - 3.71e5T^{2} \) |
| 17 | \( 1 + 1.82e3iT - 1.41e6T^{2} \) |
| 19 | \( 1 - 113.T + 2.47e6T^{2} \) |
| 23 | \( 1 - 8.45iT - 6.43e6T^{2} \) |
| 29 | \( 1 - 7.75e3T + 2.05e7T^{2} \) |
| 31 | \( 1 + 5.07e3T + 2.86e7T^{2} \) |
| 37 | \( 1 - 1.12e4iT - 6.93e7T^{2} \) |
| 41 | \( 1 - 4.49e3T + 1.15e8T^{2} \) |
| 43 | \( 1 + 1.71e4iT - 1.47e8T^{2} \) |
| 47 | \( 1 - 1.65e3iT - 2.29e8T^{2} \) |
| 53 | \( 1 - 6.20e3iT - 4.18e8T^{2} \) |
| 59 | \( 1 + 6.32e3T + 7.14e8T^{2} \) |
| 61 | \( 1 - 2.28e4T + 8.44e8T^{2} \) |
| 67 | \( 1 - 6.60e4iT - 1.35e9T^{2} \) |
| 71 | \( 1 + 2.98e4T + 1.80e9T^{2} \) |
| 73 | \( 1 - 2.01e4iT - 2.07e9T^{2} \) |
| 79 | \( 1 + 2.27e4T + 3.07e9T^{2} \) |
| 83 | \( 1 - 8.15e4iT - 3.93e9T^{2} \) |
| 89 | \( 1 + 7.01e4T + 5.58e9T^{2} \) |
| 97 | \( 1 + 9.37e4iT - 8.58e9T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.72456588792517806966711737774, −12.74679281313366293520625524818, −11.69313174057816816675008232791, −10.01293081228602045489840377939, −8.662666024089320744573184540762, −7.35497334903504880372293437000, −6.55084057257130076573251874012, −5.49575929342288443442393764266, −2.80566782478734642695123587448, −0.992084140478228599584514691318,
1.61149857869042726655174136103, 3.88243140363068982158760594627, 4.60372037360518008425324630800, 6.27020317734126453716070164450, 8.809272923373119837507441143511, 9.390976237854387166037473728439, 10.33452324337145829531893188336, 11.39031198771377445161699193733, 12.59817541572690969187889117463, 14.04578028264643251466809573307