L(s) = 1 | + 8·2-s − 93·3-s + 64·4-s + 125·5-s − 744·6-s + 343·7-s + 512·8-s + 6.46e3·9-s + 1.00e3·10-s − 2.16e3·11-s − 5.95e3·12-s − 1.66e3·13-s + 2.74e3·14-s − 1.16e4·15-s + 4.09e3·16-s − 3.57e4·17-s + 5.16e4·18-s + 2.02e4·19-s + 8.00e3·20-s − 3.18e4·21-s − 1.73e4·22-s − 4.21e4·23-s − 4.76e4·24-s + 1.56e4·25-s − 1.32e4·26-s − 3.97e5·27-s + 2.19e4·28-s + ⋯ |
L(s) = 1 | + 0.707·2-s − 1.98·3-s + 1/2·4-s + 0.447·5-s − 1.40·6-s + 0.377·7-s + 0.353·8-s + 2.95·9-s + 0.316·10-s − 0.490·11-s − 0.994·12-s − 0.209·13-s + 0.267·14-s − 0.889·15-s + 1/4·16-s − 1.76·17-s + 2.08·18-s + 0.676·19-s + 0.223·20-s − 0.751·21-s − 0.347·22-s − 0.722·23-s − 0.703·24-s + 1/5·25-s − 0.148·26-s − 3.88·27-s + 0.188·28-s + ⋯ |
Λ(s)=(=(70s/2ΓC(s)L(s)−Λ(8−s)
Λ(s)=(=(70s/2ΓC(s+7/2)L(s)−Λ(1−s)
Particular Values
L(4) |
= |
0 |
L(21) |
= |
0 |
L(29) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−p3T |
| 5 | 1−p3T |
| 7 | 1−p3T |
good | 3 | 1+31pT+p7T2 |
| 11 | 1+197pT+p7T2 |
| 13 | 1+1661T+p7T2 |
| 17 | 1+35771T+p7T2 |
| 19 | 1−20222T+p7T2 |
| 23 | 1+42130T+p7T2 |
| 29 | 1+111789T+p7T2 |
| 31 | 1+269504T+p7T2 |
| 37 | 1−532774T+p7T2 |
| 41 | 1−158056T+p7T2 |
| 43 | 1+521874T+p7T2 |
| 47 | 1+939733T+p7T2 |
| 53 | 1+408384T+p7T2 |
| 59 | 1+522172T+p7T2 |
| 61 | 1−350080T+p7T2 |
| 67 | 1+3931176T+p7T2 |
| 71 | 1−1194016T+p7T2 |
| 73 | 1−998350T+p7T2 |
| 79 | 1+2120709T+p7T2 |
| 83 | 1+1746708T+p7T2 |
| 89 | 1+10077740T+p7T2 |
| 97 | 1+6238295T+p7T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.69362413585645205424718153233, −11.45434015453331570780147383664, −10.96734454157312658203098730151, −9.739758237592853792796587117015, −7.37328762833955662740195748137, −6.25627768659347379788030877787, −5.33031194131864932264044013813, −4.36674476943709959838801653601, −1.77191670656768194676704463876, 0,
1.77191670656768194676704463876, 4.36674476943709959838801653601, 5.33031194131864932264044013813, 6.25627768659347379788030877787, 7.37328762833955662740195748137, 9.739758237592853792796587117015, 10.96734454157312658203098730151, 11.45434015453331570780147383664, 12.69362413585645205424718153233